Please wait a minute...
材料导报  2019, Vol. 33 Issue (16): 2753-2758    https://doi.org/10.11896/cldb.18080005
  金属与金属基复合材料 |
均匀化态GH3625合金热加工图及短流程热挤压管材研究
丁雨田1, 2,, 陈建军1, 2, 李海峰3, 高钰璧1, 2, 许佳玉1, 2, 马元俊1, 2
1 兰州理工大学材料科学与工程学院,兰州 730050
2 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
3 常州恒丰特种导体股份有限公司,常州 213000
Study on Processing Map of Homogenized GH3625 Superalloy and Its Tube Manufacturing by Short-flow Hot Extrusion
DING Yutian1,2, CHEN Jianjun1,2, LI Haifeng3, GAO Yubi1,2, XU Jiayu1,2, MA Yuanjun1,2
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050
2 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050
3 Changzhou Hengfeng Special Conductor Co., Ltd, Changzhou 213000
下载:  全 文 ( PDF ) ( 3365KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在Gleeble-3800热模拟机上对均匀化态GH3625合金进行等温热压缩实验,研究了该合金在变形温度为800~1 200 ℃、应变速率为0.01~10 s-1条件下的热变形行为。利用动态材料模型建立了均匀化态GH3625合金的热加工图,然后基于热加工图在卧式挤压机上对均匀化态GH3625合金进行短流程热挤压管材试验,并验证了其可行性。研究表明,GH3625合金在热压缩变形过程中,加工硬化和动态再结晶软化共同发挥作用,使得真应力-真应变曲线呈典型的动态再结晶特征。加工图中的安全区为变形温度1 150~1 200 ℃、应变速率0.01~0.1 s-1,该区域的最大峰值效率为0.48。空心管坯在挤压温度为1 150 ℃、挤压速度为50 mm/s和挤压比为7.4的条件下,成功挤压出规格为Φ43 mm×9.5 mm的GH3625合金荒管,其组织及力学性能接近于传统热挤压工艺制备的管材。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁雨田
陈建军
李海峰
高钰璧
许佳玉
马元俊
关键词:  GH3625合金  热压缩  动态再结晶  加工图  加工硬化  短流程热挤压    
Abstract: The isothermal compression experiments of homogenized GH3625 superalloy were carried out on a Gleeble-3800 thermal simulator, aiming at studying the hot deformation behavior of the alloy in the temperature range of 800—1 200 ℃ and strain rate range of 0.01—10 s-1. The processing map of this alloy was established on the basis of dynamic material model, then the GH3625 superalloy seamless tube was manufactured by short-flow hot extrusion on a horizontal extruder according to the processing map, and its feasibility was verified. The results showed that the work-hardening and softening caused by dynamic recrystallization of GH3625 acted together in the process of thermal compression, which made the true stress-strain curves exhibited typical dynamic recrystallization characteristics. The safe region with maximum peak efficiency was 0.48, which could be observed in the processing map in the temperature range of 1 150—1 200 ℃ and strain rate range of 0.01—0.1 s-1. The GH3625 superalloy tube with size of Φ43 mm×9.5 mm had been successfully extruded from the hollow tube under the preheating temperature of 1 150 ℃, fixed extrusion speed of 50 mm/s, and extrusion ratio of 7.4. The GH3625 tubes manufactured by short-flow hot extrusion presented similar microstructure and mechanical properties to the one prepared by traditional hot extrusion process.
Key words:  GH3625 superalloy    thermal compression    dynamic recrystallization (DRX)    processing map    work-hardening    short-flow hot extrusion
                    发布日期:  2019-07-12
ZTFLH:  TG379  
基金资助: 国家自然科学基金(51661019);甘肃省重大科技专项项目(145RTSA004)
作者简介:  丁雨田,兰州理工大学教授,博士研究生导师,甘肃省第一层次领军人才。2016年获得冶金有色工业科技进步一等奖。1983年西安交通大学铸造专业本科毕业,获工学学士学位,1986年西安交通大学铸造专业研究生毕业,获工学硕士学位,2005年兰州理工大学博士研究生毕业,获工学博士学位。先后主持完成国家自然基金项目、甘肃省科技重大专项项目、甘肃省科技攻关项目、甘肃省自然科学基金项目以及企业委托开发的科研项目等40余项。现主要研究方向为镍基变形高温合金、3D打印用镍基高温合金粉末制备及镍基高温合金素化。在国内外学术刊物及学术会议上发表论文260余篇。
陈建军,兰州理工大学硕士研究生,2016年毕业于兰州理工大学,获材料成型及控制工程专业工学学士学位。2016年就读于兰州理工大学,攻读材料加工工程专业硕士学位,师从丁雨田教授,研究方向为镍基高温合金,已发表学术论文2篇。
引用本文:    
丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
DING Yutian, CHEN Jianjun, LI Haifeng, GAO Yubi, XU Jiayu, MA Yuanjun. Study on Processing Map of Homogenized GH3625 Superalloy and Its Tube Manufacturing by Short-flow Hot Extrusion. Materials Reports, 2019, 33(16): 2753-2758.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18080005  或          http://www.mater-rep.com/CN/Y2019/V33/I16/2753
[1] Zhang H B. Special Steel Technology, 2000(3), 69 (in Chinese).
张红斌. 特钢技术, 2000(3), 69.
[2] Guo J T. Materials science and engineering for superalloys, Science Press, China,2008 (in Chinese).
郭建亭. 高温合金材料学, 科学出版社,2008.
[3] China Aeronautical Materials Handbook Compile Committee. China aeronautical materials handbook, Standards Press of China, 2002 (in Chinese).
中国材料手册编委会.航空材料手册,中国标准出版社, 2002.
[4] Shi C X, Zhong Z Y. Fifty years development of superalloy in China, Me-tallurgical Industry Press,China,2006(in Chinese).
师昌绪, 仲增墉. 中国高温合金五十年, 冶金工业出版社, 2006.
[5] Wang Z T, Zhang S H, Cheng M, et al. Forging & Stamping Technology, 2010, 35(4), 48 (in Chinese).
王忠堂, 张士宏, 程明, 等. 锻压技术, 2010, 35(4), 48.
[6] Xu G H, Pei M Z, Yang Y J, et al. Hot Working Technology, 2011, 40(1), 90 (in Chinese).
胥国华,裴明哲,杨玉军,等.热加工工艺, 2011, 40(1), 90.
[7] Li D F, Wu Z G, Guo S L, et al. Rare Metal Materials and Engineering, 2012, 41(6), 1026 (in Chinese).
李德富,吾志岗,郭胜利,等.稀有金属材料与工程, 2012, 41(6), 1026.
[8] Tan Y B, Ma Y H, Zhao F. Journal of Alloys & Compounds, 2018, 741(4), 85.
[9] 丁雨田, 刘德学, 胡勇, 等.中国专利, CN105331913A, 2016.
[10] Wu Z G, Li D F. The Chinese Journal of Nonferrous Metals, 2010, 20(7), 1321 (in Chinese).
吾志岗, 李德富.中国有色金属学报, 2010, 20(7), 1321.
[11] Yan S C, Cheng M, Zhang S H, et al. Chinese Journal of Materials Research, 2010, 24(3), 239(in Chinese).
闫士彩, 程明, 张士宏,等. 材料研究学报, 2010, 24(3), 239.
[12] Tao L, Cheng M, Zhang W H, et al. Transactions of Materials and Heat Treatment, 2012, 33(9), 55(in Chinese).
陶琳, 程明, 张伟红,等.材料热处理学报, 2012, 33(9), 55.
[13] Guo Q M, Li D F, Peng H J, et al. Journal of University of Science and Technology Beijing, 2011, 33(5), 587(in Chinese).
郭青苗, 李德富, 彭海健, 等. 北京科技大学学报, 2011, 33(5), 587.
[14] Guo Q M, Li D F, Guo S L, et al. Journal of Nuclear Materials, 2011, 414(3), 440.
[15] Xie S Q. Foundry Technology, 2015, 36(3), 611(in Chinese).
谢淑卿. 铸造技术, 2015, 36(3), 611.
[16] Dang L, Yang H, Guo L G, et al. Transactions of Nonferrous Metals So-ciety of China, 2015, 25(9), 3037.
[17] Wu Z G, Li D F, Guo S L, et al. Rare Metal Materials and Engineering, 2012, 41(2), 235(in Chinese).
吾志岗, 李德富, 郭胜利, 等. 稀有金属材料与工程, 2012, 41(2), 235.
[18] Guo Q M, Li H T, Li D F, et al. Chinese Journal of Rare Metals, 2011, 35(5), 684 (in Chinese).
郭青苗, 李海涛, 李德富, 等. 稀有金属, 2011, 35(5), 684.
[19] Doherty R D, Hughes D A, Humphreys F J, et al. Materials Science & Engineering A, 1997, 238(2), 219.
[20] Sakai T. Journal of Materials Processing Technology, 1995, 53(1), 349.
[21] Poliak E I, Jonas J J. Acta Materialia, 1996, 44(1), 127.
[22] Jiang H, Dong J X, Zhang M C, et al. Journal of Alloys & Compounds, 2017, 735(11), 1520.
[23] Zhang C, Zhang L, Shen W, et al. Journal of Alloys & Compounds, 2017, 728(9), 1269.
[24] Zeng W D, Zhou Y G, Zhou J, et al. Rare Metal Materials and Enginee-ring, 2006, 35(5), 673 (in Chinese).
曾卫东, 周义刚, 周军, 等. 稀有金属材料与工程, 2006, 35(5), 673.
[25] Prasad Y V R K. Journal of Materials Engineering & Performance, 2003, 12(6), 638.
[26] Ju Q, Li D G, Liu G Q. Acta Metallurgica Sinica, 2006, 42(2), 218(in Chinese).
鞠泉, 李殿国, 刘国权. 金属学报, 2006, 42(2), 218.
[27] Ziegler H. Progress in solid mechanics, Wiley Press, USA, 1963.
[28] Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Metallurgical Tran-sactions A, 1984, 15(10), 1883.
[29] Zhou H T, Liu Z C, Wen S F, et al. Rare Metal Materials and Enginee-ring, 2012, 41(11), 1917 (in Chinese).
周海涛, 刘志超, 温盛发,等.稀有金属材料与工程, 2012, 41(11), 1917.
[30] Guo Q M, Li D F, Guo S L, et al. Journal of Mechanical Engineering, 2011, 47(6), 51 (in Chinese).
郭青苗, 李德富, 郭胜利, 等. 机械工程学报, 2011, 47(6), 51.
[31] Ding Y T, Gao X, Dou Z Y, et al. Special Casting & Nonferrous Alloys, 2016, 36(11), 1121 (in Chinese).
丁雨田, 高鑫, 豆正义, 等. 特种铸造及有色合金, 2016, 36(11), 1121.
[32] Liu D X, Cheng X W, Ding Y T, et al. Journal of Wuhan University of Technology (Materials Science Edition), 2016, 31(6), 1368.
[1] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[2] 孙国元, 张敏. 块体金属玻璃的加工硬化行为[J]. 材料导报, 2019, 33(3): 462-469.
[3] 田亚强, 黎旺, 郑小平, 宋进英, 魏英立, 陈连生. 两相区退火热轧中锰钢碳化物析出行为与组织性能研究[J]. 材料导报, 2019, 33(16): 2765-2770.
[4] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[5] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[6] 陈龙, 司家勇, 刘松浩, 廖凯. 挤压态FGH4096合金的热变形行为及热加工图[J]. 材料导报, 2019, 33(12): 2047-2054.
[7] 程晓农, 桂香, 罗锐, 杨雨童, 陈乐利, 王威, 王稳. 核电装备用奥氏体不锈钢的高温本构模型及动态再结晶[J]. 材料导报, 2019, 33(11): 1775-1781.
[8] 薛克敏, 薄冬青, 李萍. 轧制态7A60铝合金的热压缩显微组织及流变行为[J]. 《材料导报》期刊社, 2018, 32(8): 1306-1310.
[9] 丁雨田, 马元俊, 豆正义, 刘建军, 高钰璧, 孟斌. 固溶处理温度对GH3625合金热挤压管材微观组织和力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1311-1317.
[10] 朱利敏, 李全安. Mg-8.08Gd-2.41Sm-0.3Zr合金热压缩变形及热加工图[J]. 《材料导报》期刊社, 2018, 32(4): 593-597.
[11] 袁战伟, 李付国, 王春伟, 王瑜, 郭亚杰, 周亮. 基于Murty准则的SiCp/Al复合材料热加工图研究[J]. 《材料导报》期刊社, 2018, 32(4): 657-661.
[12] 张永集, 吴光亮, 武尚文. Nb-Ti微合金高强钢动态再结晶动力学及临界条件[J]. 材料导报, 2018, 32(22): 3900-3907.
[13] 丁雨田,孟斌,高钰璧,高鑫,豆正义,马元俊. 固溶处理对GH3625合金板材组织及性能的影响[J]. 《材料导报》期刊社, 2018, 32(2): 243-248.
[14] 王永强, 朱国辉, 陈其伟, 丁汉林, 万德成. 高强度超细晶金属材料塑性行为及增塑研究进展[J]. 材料导报, 2018, 32(19): 3414-3422.
[15] 赵正阳, 孙明月, 孙建亮. 含稀土H13钢热变形行为及热加工图研究*[J]. CLDB, 2017, 31(8): 149-155.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed