Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1311-1317    https://doi.org/10.11896/j.issn.1005-023X.2018.08.020
  材料研究 |
固溶处理温度对GH3625合金热挤压管材微观组织和力学性能的影响
丁雨田, 马元俊, 豆正义, 刘建军, 高钰璧, 孟斌
兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Effect of Solution Treatment Temperature on Microstructure and Mechanical Properties of GH3625 Alloy Hot Extruded Tube
DING Yutian, MA Yuanjun, DOU Zhengyi, LIU Jianjun, GAO Yubi, MENG Bin
State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 5225KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用SEM、EDS和XRD等手段研究了不同固溶处理温度对GH3625合金热挤压管材组织性能的影响。结果表明,1 120 ℃是合金组织和力学性能的一个转折点。当固溶处理温度为910~1 120 ℃时,由于晶界处NbC相的钉扎作用,使得晶粒长大缓慢,合金硬度和强度缓慢下降;当固溶温度超过1 120 ℃时,NbC相大量回溶,钉扎作用减弱或消失,晶粒急剧长大,合金硬度和强度的下降趋势明显增大。随着固溶温度的升高,合金断口中的韧窝变得大而深邃,塑性逐渐提高;当固溶温度超过1 120 ℃时,拉伸断口基本以韧窝为主。GH3625合金热挤压管材在固溶处理时间为1 h时的最佳固溶处理温度为1 120 ℃。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁雨田
马元俊
豆正义
刘建军
高钰璧
孟斌
关键词:  GH3625合金  固溶处理  微观组织  力学性能    
Abstract: The influence of solution temperature on microstructure and mechanical properties of GH3625 alloy hot extruded tube were investigated by SEM, EDS, XRD, etc. The results indicated that 1 120 ℃ was a turning point in the microstructure and mechanical properties of alloys. When the solution treatment temperature was between 910 ℃ and 1 120 ℃, the grain hardness increased and the strength decreased slowly because of the pinning of NbC phase at grain boundary. When the solution temperature exceeded 1 120 ℃, the NbC phase was dissolved in a large amount, the pinning effect was weakened, the grain size increased rapidly, the hardness and strength of the alloy decreased obviously. With the increasing temperature, the dimples in alloy fractwre became large and deep and the plasticity gradually increased. When the temperature exceeded 1 120 ℃, there were mainly dimples in tensile fracture. In conclusion, the optimum solution treatment temperature of GH3625 alloy hot extrusion tube is 1 120 ℃.
Key words:  GH3625 alloy    solution treatment    microstructure    mechanical properties
出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  TG142.71  
基金资助: 国家自然科学基金(51661019);甘肃省重大科技专项项目(145RTSA004)
通讯作者:  马元俊:男,1993年生,硕士研究生,研究方向为 GH3625合金 E-mail:m372367004@163.com   
作者简介:  丁雨田:男,1962年生,博士,教授,博士研究生导师,研究方向为镍基高温合金 E-mail:Dingyutian@126.com
引用本文:    
丁雨田, 马元俊, 豆正义, 刘建军, 高钰璧, 孟斌. 固溶处理温度对GH3625合金热挤压管材微观组织和力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1311-1317.
DING Yutian, MA Yuanjun, DOU Zhengyi, LIU Jianjun, GAO Yubi, MENG Bin. Effect of Solution Treatment Temperature on Microstructure and Mechanical Properties of GH3625 Alloy Hot Extruded Tube. Materials Reports, 2018, 32(8): 1311-1317.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.020  或          https://www.mater-rep.com/CN/Y2018/V32/I8/1311
1 冶军.美国镍基高温合金[M].北京:科学出版社,1978.
2 Zhong Z W, Peng Z F. Fractal roughness structures of precision-machined WC-Co- and Inconel 625-coated steel rods[J].The International Journal of Advanced Manufacturing Technology,2007,33(9):885.
3 郭建亭.高温合金材料学[M].北京:科学出版社,2008.
4 张红斌.国外Inconel 625合金的进展[J].特钢技术,2000(3):69.
5 Thivillon L, Bertrand P H, Laget B, et al. Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components[J].Journal of Nuclear Materials,2009,385(2):236.
6 Lu Yaohui, Xu Fujia, Liu Yuxin, et al. Effect of solution temperature on the microstructure of Inconel 625 alloy fabricated by PAW rapid prototyping[J].Materials Science & Technology,2013,21(2):14(in Chinese).
吕耀辉,徐富家,刘玉欣,等.固溶温度对等离子快速成形Inconel625合金组织的影响[J].材料科学与工艺,2013,21(2):14.
7 Zhang Q, Wang J W, et al. Effects of solution treatment on microstructure and tensile properties of hot isostatic pressed Inconel 625 alloy[J]. Heat Treatment of Metals,2013,38(3):65(in Chinese).
张谦,王基维,等.固溶处理对热等静压Inconel 625合金组织与拉伸性能的影响[J].金属热处理,2013,38(3):65.
8 Wei P, Li J R, Zhong Z G. Study on the surface recrystallization of a nickel-base single crystal superalloy[J].Journal of Materials Engineering,2001(10):5(in Chinese).
卫平,李嘉荣,钟振纲.一种镍基单晶高温合金的表面再结晶研究[J].材料工程,2001(10):5.
9 Cox D C, Roebuck B, Rae C M F, et al. Recrystallisation of single crystal superalloy CMSX-4[J].Materials Science and Technology,2003,19(4):440.
10 Li Y N, He D, Li S S, et al. Surface recrystallization in a Ni3Al based single crystal alloy IC6sx[J].Acta Metallurgica Sinica,2008,44(4):391(in Chinese).
李亚楠,何迪,李树索,等.Ni3Al基单晶合金IC6sx的表面再结晶[J].金属学报,2008,44(4):391.
11 Wang Z G, Zhao J C, Yan P, et al. Recrystallization of nickel base single crystal superalloy[J].Journal of Iron & Steel Research,2009,21(2):23.
12 Li J R, Sun F L, Xiong J C, et al. Effects of surface recrystallization on the microstructures and creep properties of single crystal superalloy DD6[J].Materials Science Forum,2010,638-642(9):2279.
13 Bian Fang, Su Guoyue, et al. Effect of solution parameters on grain growth of cold deformed Inconel 718 alloy[J].Rare Metal Materials and Engineering,2005,34(8):1338(in Chinese).
边舫,苏国跃,等.固溶参数对冷变形Inconel718合金晶粒长大的影响[J].稀有金属材料与工程,2005,34(8):1338.
14 Xiong Jichun, Li Jiarong, et al. Characteristic and formation mechanism of precipitates at recrystallization grain boundaries of single crystal superalloy DD6[J].Acta Metallurgica Sinica,2009,45(10):1232(in Chinese).
熊继春,李嘉荣,等.单晶高温合金DD6再结晶晶界析出相特征及其形成机制[J].金属学报,2009,45(10):1232.
15 Liu Yongchang, Guo Qianying, Li Chong, et al. Recent progress on evolution of precipitates in Inconel 718 superalloy[J].Acta Metallurgica Sinica,2016,52(10):1259(in Chinese).
刘永长,郭倩颖,李冲,等.Inconel718高温合金中析出相演变研究进展[J].金属学报,2016,52(10):1259.
16 Li Qiang, Zhou Bangxin. A study of microstructure of alloy 690[J].Acta Metallurgica Sinica,2001(1):8(in Chinese).
李强,周邦新.690合金的显微组织研究[J].金属学报,2001(1):8.
17 Guo Jing, Geng Zhiyu, Dong Jianxin, et al. Microstructure and thermodynamic calculation of nickel based corrosion resistant 825 alloy[J].Rare Metal Materials and Engineering,2012,41(11):1929(in Chinese).
郭婧,耿志宇,董建新,等.镍基耐蚀825合金的组织特征及热力学计算[J].稀有金属材料与工程,2012,41(11):1929.
18 Xia Pengcheng, Yu Jinjiang, Sun Xiaofeng, et al. Effect of heat treatment on DZ951 γ′ phase of directionally nickel base superalloy[J].Rare Metal Materials and Engineering,2006,35(5):779(in Chinese).
夏鹏成,于金江,孙晓峰,等.热处理对定向镍基高温合金DZ951γ′相的影响[J].稀有金属材料与工程,2006,35(5):779.
19 Li Yang, Li Sha, et al. Effect of solution treatment on structure and mechanical properties of nickel base alloy GH4700[J].Special Steel,2013,34(3):64(in Chinese).
李阳,李莎,等.固溶处理对GH4700镍基合金管组织及力学性能的影响[J].特殊钢,2013,34(3):64.
20 高玉光, 刘靖. 固溶处理对825镍基合金管组织和力学性能的影响[C]∥2015连铸装备的技术创新和精细化生产技术交流会.西安,2015:342.
21 Guo Qingmiao, Li Haitao, Li Defu, et al. Hot extrusion moulding process and microstructure evolution of GH625 superalloy tubes[J].Chinese Journal of Rare Metals,2011,35(5):684(in Chinese).
郭青苗,李海涛,李德富,等.GH625合金管材热挤压成形工艺及组织演变的研究[J].稀有金属,2011,35(5):684.
22 Wu Zhigang, Li Defu, et al. Effect of deformation conditions on dynamic recrystallization of GH625 nickel-base alloy[J].Chinese Journal of Rare Metals,2010,34(6):833(in Chinese).
吾志岗,李德富,等.变形条件对GH625合金高温变形动态再结晶的影响[J].稀有金属,2010,34(6):833.
23 Fang Xudong, Han Depei, Li Yang. Effect of heat treatment on microstructure and mechanical properties of GH625 alloy hot extruded pipe[J].Hot Working Technology,2013,42(8):201(in Chinese).
方旭东,韩德培,李阳.热处理对GH625热挤压管材组织和力学性能的影响[J].热加工工艺,2013,42(8):201.
24 Floreen S, Fuchs G E, Yang W J. The metalurgy of alloy 625[M]∥Superalloys 718, 625, 706 and various derivatives. Warrendale,1994:13.
25 Wang X L, Wei Y H, Wang W, et al. Calculation of second phase particle-grain boundary interaction range[J].Acta Metallurgica Sinica,2008,21(1):8.
26 Zurob H S, Brechet Y, Purdy G. A model for the competition of precipitation and recrystallization in deformed austenite[J].Acta Mate-rialia,2001,49(20):4183.
27 Zhang Z H, Liu Y N, Liang X K, et al. The effect of Nb on recrystallization behavior of a Nb micro-alloyed steel[J].Materials Science & Engineering A,2008,474(1):254.
28 Xiong Yi, Zhang Lingfeng, et al. Influenceof heat treatment on microstructureof GH4199 alloy[J].Transactions of Materials and Heat Treatment,2010,31(2):35(in Chinese).
熊毅,张凌峰,等.热处理对GH4199合金组织的影响材[J].材料热处理学报,2010,31(2):35.
29 Feng Han, Song Zhigang, et al. Effect of solution treatment on microstructure and mechanical property of Inconel 690[J].Journal of Iron and Steel Research,2009,21(3):46(in Chinese).
丰涵,宋志刚,等.固溶处理对Inconel 690合金组织和力学性能的影响[J].钢铁研究学报,2009,21(3):46.
30 Li X, Zhang J, Rong L, et al. Effect of twins on the moderate temperature tensile deformation of a γ′ strengthened Fe-based superalloy[J].Journal of Alloys & Compounds,2009,467(1):383.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[6] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[7] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[8] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[9] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[10] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[11] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[12] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[13] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[14] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[15] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed