Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1311-1317    https://doi.org/10.11896/j.issn.1005-023X.2018.08.020
  材料研究 |
固溶处理温度对GH3625合金热挤压管材微观组织和力学性能的影响
丁雨田, 马元俊, 豆正义, 刘建军, 高钰璧, 孟斌
兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Effect of Solution Treatment Temperature on Microstructure and Mechanical Properties of GH3625 Alloy Hot Extruded Tube
DING Yutian, MA Yuanjun, DOU Zhengyi, LIU Jianjun, GAO Yubi, MENG Bin
State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 5225KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用SEM、EDS和XRD等手段研究了不同固溶处理温度对GH3625合金热挤压管材组织性能的影响。结果表明,1 120 ℃是合金组织和力学性能的一个转折点。当固溶处理温度为910~1 120 ℃时,由于晶界处NbC相的钉扎作用,使得晶粒长大缓慢,合金硬度和强度缓慢下降;当固溶温度超过1 120 ℃时,NbC相大量回溶,钉扎作用减弱或消失,晶粒急剧长大,合金硬度和强度的下降趋势明显增大。随着固溶温度的升高,合金断口中的韧窝变得大而深邃,塑性逐渐提高;当固溶温度超过1 120 ℃时,拉伸断口基本以韧窝为主。GH3625合金热挤压管材在固溶处理时间为1 h时的最佳固溶处理温度为1 120 ℃。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁雨田
马元俊
豆正义
刘建军
高钰璧
孟斌
关键词:  GH3625合金  固溶处理  微观组织  力学性能    
Abstract: The influence of solution temperature on microstructure and mechanical properties of GH3625 alloy hot extruded tube were investigated by SEM, EDS, XRD, etc. The results indicated that 1 120 ℃ was a turning point in the microstructure and mechanical properties of alloys. When the solution treatment temperature was between 910 ℃ and 1 120 ℃, the grain hardness increased and the strength decreased slowly because of the pinning of NbC phase at grain boundary. When the solution temperature exceeded 1 120 ℃, the NbC phase was dissolved in a large amount, the pinning effect was weakened, the grain size increased rapidly, the hardness and strength of the alloy decreased obviously. With the increasing temperature, the dimples in alloy fractwre became large and deep and the plasticity gradually increased. When the temperature exceeded 1 120 ℃, there were mainly dimples in tensile fracture. In conclusion, the optimum solution treatment temperature of GH3625 alloy hot extrusion tube is 1 120 ℃.
Key words:  GH3625 alloy    solution treatment    microstructure    mechanical properties
               出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  TG142.71  
基金资助: 国家自然科学基金(51661019);甘肃省重大科技专项项目(145RTSA004)
通讯作者:  马元俊:男,1993年生,硕士研究生,研究方向为 GH3625合金 E-mail:m372367004@163.com   
作者简介:  丁雨田:男,1962年生,博士,教授,博士研究生导师,研究方向为镍基高温合金 E-mail:Dingyutian@126.com
引用本文:    
丁雨田, 马元俊, 豆正义, 刘建军, 高钰璧, 孟斌. 固溶处理温度对GH3625合金热挤压管材微观组织和力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1311-1317.
DING Yutian, MA Yuanjun, DOU Zhengyi, LIU Jianjun, GAO Yubi, MENG Bin. Effect of Solution Treatment Temperature on Microstructure and Mechanical Properties of GH3625 Alloy Hot Extruded Tube. Materials Reports, 2018, 32(8): 1311-1317.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.020  或          http://www.mater-rep.com/CN/Y2018/V32/I8/1311
1 冶军.美国镍基高温合金[M].北京:科学出版社,1978.
2 Zhong Z W, Peng Z F. Fractal roughness structures of precision-machined WC-Co- and Inconel 625-coated steel rods[J].The International Journal of Advanced Manufacturing Technology,2007,33(9):885.
3 郭建亭.高温合金材料学[M].北京:科学出版社,2008.
4 张红斌.国外Inconel 625合金的进展[J].特钢技术,2000(3):69.
5 Thivillon L, Bertrand P H, Laget B, et al. Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components[J].Journal of Nuclear Materials,2009,385(2):236.
6 Lu Yaohui, Xu Fujia, Liu Yuxin, et al. Effect of solution temperature on the microstructure of Inconel 625 alloy fabricated by PAW rapid prototyping[J].Materials Science & Technology,2013,21(2):14(in Chinese).
吕耀辉,徐富家,刘玉欣,等.固溶温度对等离子快速成形Inconel625合金组织的影响[J].材料科学与工艺,2013,21(2):14.
7 Zhang Q, Wang J W, et al. Effects of solution treatment on microstructure and tensile properties of hot isostatic pressed Inconel 625 alloy[J]. Heat Treatment of Metals,2013,38(3):65(in Chinese).
张谦,王基维,等.固溶处理对热等静压Inconel 625合金组织与拉伸性能的影响[J].金属热处理,2013,38(3):65.
8 Wei P, Li J R, Zhong Z G. Study on the surface recrystallization of a nickel-base single crystal superalloy[J].Journal of Materials Engineering,2001(10):5(in Chinese).
卫平,李嘉荣,钟振纲.一种镍基单晶高温合金的表面再结晶研究[J].材料工程,2001(10):5.
9 Cox D C, Roebuck B, Rae C M F, et al. Recrystallisation of single crystal superalloy CMSX-4[J].Materials Science and Technology,2003,19(4):440.
10 Li Y N, He D, Li S S, et al. Surface recrystallization in a Ni3Al based single crystal alloy IC6sx[J].Acta Metallurgica Sinica,2008,44(4):391(in Chinese).
李亚楠,何迪,李树索,等.Ni3Al基单晶合金IC6sx的表面再结晶[J].金属学报,2008,44(4):391.
11 Wang Z G, Zhao J C, Yan P, et al. Recrystallization of nickel base single crystal superalloy[J].Journal of Iron & Steel Research,2009,21(2):23.
12 Li J R, Sun F L, Xiong J C, et al. Effects of surface recrystallization on the microstructures and creep properties of single crystal superalloy DD6[J].Materials Science Forum,2010,638-642(9):2279.
13 Bian Fang, Su Guoyue, et al. Effect of solution parameters on grain growth of cold deformed Inconel 718 alloy[J].Rare Metal Materials and Engineering,2005,34(8):1338(in Chinese).
边舫,苏国跃,等.固溶参数对冷变形Inconel718合金晶粒长大的影响[J].稀有金属材料与工程,2005,34(8):1338.
14 Xiong Jichun, Li Jiarong, et al. Characteristic and formation mechanism of precipitates at recrystallization grain boundaries of single crystal superalloy DD6[J].Acta Metallurgica Sinica,2009,45(10):1232(in Chinese).
熊继春,李嘉荣,等.单晶高温合金DD6再结晶晶界析出相特征及其形成机制[J].金属学报,2009,45(10):1232.
15 Liu Yongchang, Guo Qianying, Li Chong, et al. Recent progress on evolution of precipitates in Inconel 718 superalloy[J].Acta Metallurgica Sinica,2016,52(10):1259(in Chinese).
刘永长,郭倩颖,李冲,等.Inconel718高温合金中析出相演变研究进展[J].金属学报,2016,52(10):1259.
16 Li Qiang, Zhou Bangxin. A study of microstructure of alloy 690[J].Acta Metallurgica Sinica,2001(1):8(in Chinese).
李强,周邦新.690合金的显微组织研究[J].金属学报,2001(1):8.
17 Guo Jing, Geng Zhiyu, Dong Jianxin, et al. Microstructure and thermodynamic calculation of nickel based corrosion resistant 825 alloy[J].Rare Metal Materials and Engineering,2012,41(11):1929(in Chinese).
郭婧,耿志宇,董建新,等.镍基耐蚀825合金的组织特征及热力学计算[J].稀有金属材料与工程,2012,41(11):1929.
18 Xia Pengcheng, Yu Jinjiang, Sun Xiaofeng, et al. Effect of heat treatment on DZ951 γ′ phase of directionally nickel base superalloy[J].Rare Metal Materials and Engineering,2006,35(5):779(in Chinese).
夏鹏成,于金江,孙晓峰,等.热处理对定向镍基高温合金DZ951γ′相的影响[J].稀有金属材料与工程,2006,35(5):779.
19 Li Yang, Li Sha, et al. Effect of solution treatment on structure and mechanical properties of nickel base alloy GH4700[J].Special Steel,2013,34(3):64(in Chinese).
李阳,李莎,等.固溶处理对GH4700镍基合金管组织及力学性能的影响[J].特殊钢,2013,34(3):64.
20 高玉光, 刘靖. 固溶处理对825镍基合金管组织和力学性能的影响[C]∥2015连铸装备的技术创新和精细化生产技术交流会.西安,2015:342.
21 Guo Qingmiao, Li Haitao, Li Defu, et al. Hot extrusion moulding process and microstructure evolution of GH625 superalloy tubes[J].Chinese Journal of Rare Metals,2011,35(5):684(in Chinese).
郭青苗,李海涛,李德富,等.GH625合金管材热挤压成形工艺及组织演变的研究[J].稀有金属,2011,35(5):684.
22 Wu Zhigang, Li Defu, et al. Effect of deformation conditions on dynamic recrystallization of GH625 nickel-base alloy[J].Chinese Journal of Rare Metals,2010,34(6):833(in Chinese).
吾志岗,李德富,等.变形条件对GH625合金高温变形动态再结晶的影响[J].稀有金属,2010,34(6):833.
23 Fang Xudong, Han Depei, Li Yang. Effect of heat treatment on microstructure and mechanical properties of GH625 alloy hot extruded pipe[J].Hot Working Technology,2013,42(8):201(in Chinese).
方旭东,韩德培,李阳.热处理对GH625热挤压管材组织和力学性能的影响[J].热加工工艺,2013,42(8):201.
24 Floreen S, Fuchs G E, Yang W J. The metalurgy of alloy 625[M]∥Superalloys 718, 625, 706 and various derivatives. Warrendale,1994:13.
25 Wang X L, Wei Y H, Wang W, et al. Calculation of second phase particle-grain boundary interaction range[J].Acta Metallurgica Sinica,2008,21(1):8.
26 Zurob H S, Brechet Y, Purdy G. A model for the competition of precipitation and recrystallization in deformed austenite[J].Acta Mate-rialia,2001,49(20):4183.
27 Zhang Z H, Liu Y N, Liang X K, et al. The effect of Nb on recrystallization behavior of a Nb micro-alloyed steel[J].Materials Science & Engineering A,2008,474(1):254.
28 Xiong Yi, Zhang Lingfeng, et al. Influenceof heat treatment on microstructureof GH4199 alloy[J].Transactions of Materials and Heat Treatment,2010,31(2):35(in Chinese).
熊毅,张凌峰,等.热处理对GH4199合金组织的影响材[J].材料热处理学报,2010,31(2):35.
29 Feng Han, Song Zhigang, et al. Effect of solution treatment on microstructure and mechanical property of Inconel 690[J].Journal of Iron and Steel Research,2009,21(3):46(in Chinese).
丰涵,宋志刚,等.固溶处理对Inconel 690合金组织和力学性能的影响[J].钢铁研究学报,2009,21(3):46.
30 Li X, Zhang J, Rong L, et al. Effect of twins on the moderate temperature tensile deformation of a γ′ strengthened Fe-based superalloy[J].Journal of Alloys & Compounds,2009,467(1):383.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[4] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[5] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[6] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[7] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[8] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[9] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[10] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[11] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[12] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[13] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed