Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 657-661    https://doi.org/10.11896/j.issn.1005-023X.2018.04.030
  计算模拟 |
基于Murty准则的SiCp/Al复合材料热加工图研究
袁战伟1, 李付国2, 王春伟1, 王瑜1, 郭亚杰1, 周亮1
1 长安大学材料科学与工程学院,西安 710061;
2 西北工业大学材料科学与工程学院,西安 710072
Study on Hot Processing Map of SiCp/Al Composite Based on Murty Criterion
YUAN Zhanwei1, LI Fuguo2, WANG Chunwei1, WANG Yu1, GUO Yajie1, ZHOU Liang1
1 School of Material Science and Engineering, Chang'an University, Xi'an 710061;
2 School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072;
下载:  全 文 ( PDF ) ( 2611KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用热模拟压缩试验对15%(体积分数)SiCp/Al复合材料在温度为623~773 K、应变速率为0.001~10 s-1的热变形行为进行了研究,基于Murty准则建立了该材料的热加工图,并在此基础上建立了SiCp/Al复合材料临界失稳应变分布图。结果表明,随变形温度升高,SiCp/Al复合材料中的强化机制逐渐减弱,软化机制逐渐增强。基于临界失稳应变图可以确定出适合SiCp/Al复合材料加工的两个区域,分别为变形温度700~773 K、应变速率0.001~0.01 s-1和变形温度740~773 K、应变速率0.02~0.14 s-1
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁战伟
李付国
王春伟
王瑜
郭亚杰
周亮
关键词:  SiCp/Al复合材料  热加工图  Murty准则    
Abstract: The hot deformation behavior of 15vol% SiCp/Al composite has been studied with thermal simulation compression test in the temperature range of 623—773 K and strain rate range of 0.001—10 s-1. Based on Murty criterion, the hot processing maps have been established, and a critical instability strain map has been drawn accordingly. It can be found that with the increased deformation temperature, the strengthening mechanism of SiCp/Al composite decreased and softening mechanism enhanced gradually. Based on the critical instability strain map, two suitable regions for SiCp/Al composite materials hot processing have been identified, namely in deformation temperature range of 700—773 K, strain rate range of 0.001—0.01 s-1, and deformation temperature range of 740—773 K and strain rate range of 0.02—0.14 s-1.
Key words:  SiCp/Al composite    hot processing map    Murty criterion
               出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  TB331  
  V261.3+2  
基金资助: 西北工业大学凝固技术国家重点实验室开放课题(SKLSP201646; SKLSP201645); 中央高校基本科研业务费专项资金(2014G1311090; 310831161023; 310831163401)
引用本文:    
袁战伟, 李付国, 王春伟, 王瑜, 郭亚杰, 周亮. 基于Murty准则的SiCp/Al复合材料热加工图研究[J]. 《材料导报》期刊社, 2018, 32(4): 657-661.
YUAN Zhanwei, LI Fuguo, WANG Chunwei, WANG Yu, GUO Yajie, ZHOU Liang. Study on Hot Processing Map of SiCp/Al Composite Based on Murty Criterion. Materials Reports, 2018, 32(4): 657-661.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.030  或          http://www.mater-rep.com/CN/Y2018/V32/I4/657
1 Qin S, Liu J, Zhang H, et al. The microstructure evolution and processing map of Ni-18.3Cr-6.4Co-5.9W-4Mo superalloy during hot deformation[J].Journal of Materials Engineering & Performance,2016,25(6):2489.
2 Yuan Z, Li F, Qiao H, et al. Constitutive flow behavior and hot workability of Aermet100 at elevated temperatures[J].Journal of Materials Engineering & Performance,2014,23(5):1981.
3 Prasad Y, Rao K. Processing maps and rate controlling mechanisms of hot deformation of electrolytic tough pitch copper in the temperature range 300—950 ℃[J].Materials Science & Engineering A,2005,391(1):141.
4 Suresh K, Dharmendra C, Rao K P, et al. Processing map of AZ31-1Ca-1.5 vol% nano-alumina composite for hot working[J].Advanced Manufacturing Processes,2015,30:1161.
5 Sun Chaoyang, Li Yamin, Xiang Yu, et al. Hot deformation beha-vior and hot processing maps of 316LN stainless steel[J].Rare Metal Materials & Engineering,2016(3):688(in Chinese).
孙朝阳,李亚民,祥雨,等.316LN高温热变形行为与热加工图研究[J].稀有金属材料与工程,2016(3):688.
6 Murty S, Rao B N, Kashyap B. On the hot working characteristics of 2014 Al-20% Al2O3 metal matrix composite[J].Journal of Materials Processing Technology,2005,166(2):279.
7 Yuan Daqing, Dong Hongbo, Zou Zhongbo, et al. Processing map and deformation zone analyses of TB8 titanium alloy based on Murty crite-rion[J].Transactions of Materials & Heat Treatment,2016,37(11):73(in Chinese).
袁大庆,董洪波,邹忠波,等.基于Murty判据的TB8钛合金加工图及变形区分析[J].材料热处理学报,2016,37(11):73.
8 Li X, Lu S, Wang K, et al. Optimization of high temperature deformation parameters of titanium alloy TC11 by using Murty crite-rion[J].Acta Metallurgica Sinica,2007,43(12):1268.
9 Malas J C, Venugopal S, Seshacharyulu T. Effect of microstructural complexity on the hot deformation behavior of aluminum alloy 2024[J].Materials Science & Engineering A,2004,368(1):41.
10 Song J, Guo Q, Ouyang Q, et al. Influence of interfaces on the mechanical behavior of SiC particulate-reinforced Al-Zn-Mg-Cu compo-sites[J].Materials Science & Engineering A,2015,644:79.
11 Qing H. Micromechanical study of influence of interface strength on mechanical properties of metal matrix composites under uniaxial and biaxial tensile loadings[J].Computational Materials Science,2014,89:102.
12 Zhou Li, Wang Changzhou, Zhang Xingxing, et al. Finite element simulation of hot rolling process for SiCp/Al composites[J].Acta Metallurgica Sinica(Chinese Edition),2015,51(7):889(in Chinese).
周丽,王唱舟,张星星,等.SiCp/Al复合材料热轧过程的有限元模拟[J].金属学报,2015,51(7):889.
13 Rajamuthamilselvan M, Ramanathan S, Karthikeyan R. Processing map for hot working of SiCp/7075 Al composites[J].Transactions of Nonferrous Metals Society of China,2010,20(4):668.
14 Song Jiawei, Jin Peipeng, Wang Jinhui, et al. Thermal deformation behavior of SiCp/Al composite material with low SiC volume fraction[J].Materials Review B:Research Papers,2015,29(2):163(in Chinese).
宋加伟,金培鹏,王金辉,等.低体积分数SiCp/Al复合材料热变形行为的研究[J].材料导报:研究篇,2015,29(2):163.
15 Wei Shaohua, Nie Junhui, Liu Yanqiang, et al. Hot deformation behavior and processing map of 15%SiCp/2009Al composites[J].Chinese Journal of Rare Metals,2016,40(8):770(in Chinese).
魏少华,聂俊辉,刘彦强,等.15%SiCp/2009Al复合材料的热变形行为及加工图[J].稀有金属,2016,40(8):770.
16 Murty S, Nageswara R B, Kashyap B. Identification of flow instabi-lities in the processing maps of AISI 304 stainless steel[J].Journal of Materials Processing Technology,2005,166(2):268.
17 Zeng Weidong, Zhou Yigang, Zhou Jun, et al. Recent development of processing map theory[J].Rare Metal Materials & Engineering,2006,35(5):673(in Chinese).
曾卫东,周义刚,周军,等.加工图理论研究进展[J].稀有金属材料与工程,2006,35(5):673.
[1] 陈龙, 司家勇, 刘松浩, 廖凯. 挤压态FGH4096合金的热变形行为及热加工图[J]. 材料导报, 2019, 33(12): 2047-2054.
[2] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[3] 赵正阳, 孙明月, 孙建亮. 含稀土H13钢热变形行为及热加工图研究*[J]. CLDB, 2017, 31(8): 149-155.
[4] 常若寒, 蔡中义, 程丽任, 车朝杰, 迟佳轩. 基于遗传BP网络的Mg-Sm-Zn-Zr合金应力预测模型及加工图[J]. 《材料导报》期刊社, 2017, 31(6): 136-139.
[5] 孙倩,陈冷. Cu-3.0Ni-0.64Si合金的热变形行为[J]. 材料导报编辑部, 2017, 31(22): 90-94.
[6] 王鹏,高增,程东锋,牛济泰,. 高体积比SiCp/A356复合材料真空扩散钎焊接头组织与性能研究*[J]. 材料导报编辑部, 2017, 31(22): 75-78.
[7] 王鹏, 高增, 李锦竹, 程东锋, 徐冬霞, 牛济泰. 高体积比SiCp/6063Al复合材料的铝基钎料制备及钎焊工艺研究*[J]. 《材料导报》期刊社, 2017, 31(2): 69-72.
[8] 胡勇, 陈威, 李晓诚, 彭和思, 丁雨田. HMn62-3-3合金的热变形行为及热加工图*[J]. 《材料导报》期刊社, 2017, 31(16): 144-149.
[9] 张桢林,张志峰,徐骏,张浩,毛卫民. SiCp/Al复合材料搅拌铸造新型搅拌器流场及工艺研究*[J]. 材料导报编辑部, 2017, 31(10): 141-145.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed