Please wait a minute...
材料导报  2018, Vol. 32 Issue (22): 3900-3907    https://doi.org/10.11896/j.issn.1005-023X.2018.22.011
  金属与金属基复合材料 |
Nb-Ti微合金高强钢动态再结晶动力学及临界条件
张永集, 吴光亮, 武尚文
中南大学资源加工与生物工程学院,长沙 410083
Kinetics and Critical Conditions for Initiation of Dynamic Recrystallization of Nb-Ti Microalloyed High Strength Steel
ZHANG Yongji, WU Guangliang, WU Shangwen
School of Minerals Processing and Bioengineering, Central South University, Changsha 410083
下载:  全 文 ( PDF ) ( 5029KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在Gleeble-3500 热模拟试验机上对Nb-Ti微合金高强钢进行了热模拟压缩试验,研究了其在变形温度为900~1 100 ℃、应变速率为0. 01~5 s-1 、最大变形量为70%条件下的动态再结晶行为。对流变曲线的分析及微观组织观察结果表明,低温高应变速率下流变曲线未显现出典型动态再结晶特征,但此条件下已发生动态再结晶。使用双曲正弦形Arrhenius关系计算的Nb-Ti微合金钢变形激活能为404 kJ/mol。利用加工硬化原理和Cingara-McQueen模型确定了动态再结晶初始临界应力和应变,分析了由Cingara-McQueen模型计算临界应力值偏高的原因,建立了临界应力、应变和Z参数之间的定量关系,得到了动态再结晶临界应力和应变方程:σc=0.335Z0.144,εc=0.005 9Z0.079。通过对θ-ε曲线进行分析,建立了最大软化速率处应变(εm)和变形条件的关系。在此基础上使用Avrami型动态再结晶动力学模型计算了不同变形条件下的再结晶体积分数,结果表明此模型可准确预测Nb-Ti微合金高强钢动力学。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张永集
吴光亮
武尚文
关键词:  Nb-Ti微合金钢  动态再结晶  临界应变  最大软化速率    
Abstract: The hot compression test was conducted on a Gleeble-3500 thermo-simulation machine over the range of temperatures from 900 ℃ to 1 100 ℃ and strain rates from 0.01 s-1 to 5 s-1 to study the dynamic recrystallization behavior of Nb-Ti microalloyed steel. The analysis of flow curve and the microstructure observation showed that the flow curve does not show the typical dynamic recrystallization characteristic, but the dynamic recrystallization has occurred under the condition of high temperature and low strain rate. The Arrhenius model of flow curves was used to calculate the deformation activation energy. The critical stress and strain were determined by using the method of work hardening and a constitutive equation. The reason for the high modeled values for critical stress was analyzed, and the quantitative relationship between the critical stress, strain and Z parameter was established so that the critical conditions equations of dynamic recrystallization were obtained: σc=0.335Z0.144,εc=0.005 9Z0.079. The relationship between the strain at maximum softening rate and the deformation conditions was established by analyzing the θ-ε curves. Furthermore, the volume fraction of dynamic recrystallization was calculated based on these critical values and the results showed that the model has a good agreement with the data directly obtained from the flow curves.
Key words:  Nb-Ti microalloyed steel    dynamic recrystallization    critical strain    maximum softening rate
               出版日期:  2018-11-25      发布日期:  2018-12-21
ZTFLH:  TG11.7  
基金资助: 国家自然科学基金(51661130154)
通讯作者:  吴光亮:通信作者,1965年生,教授,博士研究生导师,研究方向为金属材料 E-mail:glwu_899@sina.com   
作者简介:  张永集:男,1987年生,博士研究生,主要从事材料的组织与性能研究 E-mail:zhangyongji_csu@163.com
引用本文:    
张永集, 吴光亮, 武尚文. Nb-Ti微合金高强钢动态再结晶动力学及临界条件[J]. 材料导报, 2018, 32(22): 3900-3907.
ZHANG Yongji, WU Guangliang, WU Shangwen. Kinetics and Critical Conditions for Initiation of Dynamic Recrystallization of Nb-Ti Microalloyed High Strength Steel. Materials Reports, 2018, 32(22): 3900-3907.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.22.011  或          http://www.mater-rep.com/CN/Y2018/V32/I22/3900
1 Mirzadeh H, Najafizadeh A. Prediction of the critical conditions for initiation of dynamic recrystallization[J]. Materials & Design,2010,31(3):1174.
2 Zhao Baochun, Li Guiyan, Liu Fenglian, et al. Determination of critical conditions for initiation of dynamic recrystallization by new method[J]. Materials & Manufacturing Processes,2015,30(10):1235.
3 Puchi-Cabrera E S, Staia M H, Guérin J D, et al. Analysis of the work-hardening behavior of C-Mn steels deformed under hot-working conditions[J]. International Journal of Plasticity,2013,51(6):145.
4 Mirzadeh H. A simplified approach for developing constitutive equations for modeling and prediction of hot deformation flow stress[J]. Metallurgical & Materials Transactions A,2015,46(9):1.
5 Wang L, Liu F, Zuo Q, et al. Prediction of flow stress for N08028 alloy under hot working conditions[J]. Materials & Design,2013,47(9):737
6 Dehghan-Manshadi A, Barnett M R, Hodgson P D. Hot deformation and recrystallization of austenitic stainless steel: Part Ⅰ. Dynamic recrystallization[J]. Metallurgical & Materials Transactions A,2008,39(6):1359.
7 Ryan N D, Mcqueen H J. Flow stress, dynamic restoration, strain hardening and ductility in hot working of 316 steel[J]. Journal of Materials Processing Technology,1990,21(2):177.
8 Ryan N D, Mcqueen H J. Dynamic softening mechanisms in 304 austenitic stainless steel[J]. Canadian Metallurgical Quarterly,2013,29(2):147.
9 Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization[J]. Acta Materialia,1996,44(1):127.
10 Solhjoo S. Determination of flow stress and the critical strain for the onset of dynamic recrystallization using a hyperbolic tangent function[J]. Materials & Design,2014,54(2):390.
11 Najafizadeh A, Jonas J J. Predicting the critical stress for initiation of dynamic recrystallization[J]. ISIJ International,2006,46(11):1679.
12 Cingara A, McQueen H J. New formula for calculating flow curves from high temperature constitutive data for 300 austenitic steels[J]. Journal of Materials Processing Technology,1992,36(1):31.
13 Shukla R, Das S K, Kumar B R, et al. An ultra-low carbon, thermomechanically controlled processed microalloyed steel: Microstructure and mechanical properties[J]. Metallurgical & Materials Tran-sactions A,2012,43(12):4835.
14 Bandyopadhyay P S, Kundu S, Ghosh S K, et al. Structure and properties of a low-carbon, microalloyed, ultra-high-strength steel[J]. Metallurgical & Materials Transactions A,2011,42(4):1051.
15 Opiela M. Effect of thermomechanical processing on the microstructure and mechanical properties of Nb-Ti-V microalloyed steel[J]. Journal of Materials Engineering & Performance,2014,23(9):3379.
16 Mirzadeh H, Cabrera J M, Prado J M, et al. Hot deformation behavior of a medium carbon microalloyed steel[J]. Materials Science & Engineering A,2011,528(10):3876.
17 Wei H L, Liu G Q, Xiao X, et al. Dynamic recrystallization beha-vior of a medium carbon vanadium microalloyed steel[J]. Materials Science & Engineering A,2013,573(3):215.
18 Wu G, Zhou C, Liu X. Dynamic recrystallization behavior and kine-tics of high strength steel[J]. Journal of Central South University,2016,23(5):1007.
19 Ferdowsi M R G, Nakhaie D, Benhangi P H, et al. Modeling the high temperature flow behavior and dynamic recrystallization kinetics of a medium carbon microalloyed steel[J]. Journal of Materials Engineering & Performance,2014,23(3):1077.
20 Mirzadeh H, Cabrera J M, Najafizadeh A. Modeling and prediction of hot deformation flow curves[J]. Metallurgical & Materials Tran-sactions A,2012,43(1):108.
21 Jr R S, et al. Nucleation and growth during recrystallization[J]. Materials Research,2005,8(3):225.
22 Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica,1966,14(9):1136.
23 Sellars C M. Recrystallization of metals during hot deformation[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,1978,288(1350):147.
24 Poliak E I, Jonas J J. Initiation of dynamic recrystallization in constant strain rate hot deformation[J]. ISIJ International,2003,43(5):684.
25 Ebrahimi G R, Keshmiri H, Maldar A R, et al. Dynamic recrystallization behavior of 13%Cr martensitic stainless steel under hot wor-king condition[J]. Journal of Materials Science & Technology,2012,28(5):467.
26 Stewart G R, Elwazri A M, Yue S, et al. Modelling of dynamic recrystallisation kinetics in austenitic stainless and hypereutectoid steels[J]. Materials Science and Technology,2006,22(5):519.
[1] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[2] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[3] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[4] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[5] 程晓农, 桂香, 罗锐, 杨雨童, 陈乐利, 王威, 王稳. 核电装备用奥氏体不锈钢的高温本构模型及动态再结晶[J]. 材料导报, 2019, 33(11): 1775-1781.
[6] 孙倩,陈冷. Cu-3.0Ni-0.64Si合金的热变形行为[J]. 材料导报编辑部, 2017, 31(22): 90-94.
[7] 王伟, 马瑞, 赵军, 翟瑞雪. 铸锻联合成形工艺晶粒分布预测协同仿真技术*[J]. 《材料导报》期刊社, 2017, 31(2): 150-154.
[8] 罗锐, 程晓农, 郑琦, 朱晶晶, 王皎, 刘天, 陈光, 杨乔. 新型含铝奥氏体耐热合金Fe-20Cr-30Ni-0.6Nb-2Al-Mo的动态再结晶行为*[J]. 《材料导报》期刊社, 2017, 31(18): 136-140.
[9] 贺毅强, 钱晨晨, 李俊杰, 周海生. 喷射沉积铝基复合材料再结晶控制与强韧化机制的研究现状*[J]. 《材料导报》期刊社, 2017, 31(17): 90-97.
[10] 戴青松, 欧世声, 邓运来, 付平, 张佳琪. 5083铝合金的热变形组织演变及晶粒度模型*[J]. 《材料导报》期刊社, 2017, 31(14): 143-146.
[11] 孙宇, 周琛, 万志鹏, 任丽丽, 胡连喜. 金属材料动态再结晶模型研究现状*[J]. 《材料导报》期刊社, 2017, 31(13): 12-16.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed