Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (13): 12-16    https://doi.org/10.11896/j.issn.1005-023X.2017.013.002
  材料综述 |
金属材料动态再结晶模型研究现状*
孙宇1, 周琛1, 万志鹏1, 任丽丽2, 胡连喜1
1 哈尔滨工业大学金属精密热加工国家级重点实验室,哈尔滨 150001;
2 中国核工业二三建设有限公司, 北京 101300
Current Research Status of Dynamic Recrystallization Model of Metallic Materials
SUN Yu1, ZHOU Chen1, WAN Zhipeng1, REN Lili2, HU Lianxi1
1 National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001;
2 China Nuclear Industry 23 Construction Co., Ltd, Beijing 101300
下载:  全 文 ( PDF ) ( 1291KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 动态再结晶是热塑性变形过程中重要的材料软化、晶粒细化、组织控制和塑性成形能力改善方法,而材料发生动态再结晶过程形成的组织结构直接决定其综合性能,因此,长期以来动态再结晶一直是热成形过程中的研究热点。概述了动态再结晶的物理机理,介绍了位错密度模型、动力学模型和微观组织演化数值模拟,并对目前研究现状进行分析,展望其未来发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙宇
周琛
万志鹏
任丽丽
胡连喜
关键词:  动态再结晶  位错密度模型  动力学模型  元胞自动机    
Abstract: Dynamic recrystallization is an effective approach to refine grains, control texture and improve plastic deformation capacity. The mechanical properties of metal materials are directly determined by the microstructure formed by dynamic recrystallization. Therefore, an increasing number of literature concerning dynamic recrystallization have been addressed throughout the world. In the present work, the physical basis for dynamic recrystallization is reviewed. The dislocation density model, kinetic model and flow behaviors, including typical material responses to plastic deformation and the influencial factors are systematically discussed in detail. Finally, the research status of dynamic recrystallization is deeply analyzed and the developing prospect is summarized.
Key words:  dynamic recrystallization    dislocation density model    kinetic model    cellular automaton
               出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  TG146.21  
基金资助: *国家自然科学基金(51405110);中国博士后科学基金(2014M551234);高等学校博士学科点专项科研基金(20132302120002)
通讯作者:  胡连喜:通讯作者,男,1961年生,教授,博士研究生导师,主要从事轻质耐热结构材料制备与成形 E-mail:hulx@hit.edu.cn   
作者简介:  孙宇:男,1983年生,博士,副教授,主要从事金属材料热成形过程微观组织模拟 E-mail:yusun@hit.edu.cn
引用本文:    
孙宇, 周琛, 万志鹏, 任丽丽, 胡连喜. 金属材料动态再结晶模型研究现状*[J]. 《材料导报》期刊社, 2017, 31(13): 12-16.
SUN Yu, ZHOU Chen, WAN Zhipeng, REN Lili, HU Lianxi. Current Research Status of Dynamic Recrystallization Model of Metallic Materials. Materials Reports, 2017, 31(13): 12-16.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.002  或          http://www.mater-rep.com/CN/Y2017/V31/I13/12
1 Li Y P, Song R B, Wen E D, et al. Hot deformation and dynamic recrystallization behavior of austenite-based low-density Fe-Mn-Al-C steel [J]. Acta Mater,2016,29(5):441.
2 Liu Chuming, Liu Zijuan, Zhu Xiurong, et al. Research and deve-lopment progress of dynamic recrystallization in pure magnesium and its alloys [J]. Chin J Nonferrous Met,2016,16(1):1(in Chinese).
刘楚明, 刘子娟, 朱秀荣, 等. 镁及镁合金动态再结晶研究进展[J]. 中国有色金属学报,2016,16(1):1
3 Sakai T, Jonas J J. Overview No. 35, dynamic recrystallization: Mechanical and microstructural considerations [J]. Acta Metall,1984,32:189.
4 Sakai T, Akben M G, Jonas J J. Dynamic recrystallization during the transient deformation of a vanadium microalloyed steel [J]. Acta Metall,1983,31:631.
5 Luo Jiao, Li Miaoquan, Li Hong. Microstructural simulation during plastic deformation [J]. Mater Rev,2008,22(3):102(in Chinese).
罗皎, 李淼泉, 李宏. 塑性变形时的微观组织模拟[J]. 材料导报,2008,22(3):102.
6 Galindo E I, Rivera P E J. Grain size evolution during discontinuous dynamic recrystallization [J]. Scr Mater,2014,72:1.
7 Huang K, Loge R E. A review of dynamic recrystallization pheno-mena in metallic materials [J]. Mater Des,2016,111:548.
8 Lukasz M, Mateusz S, Maciej P. Perceptive comparison mean full field dynamic recrystallization models [J]. Archives Civil Mech Eng,2016,16(4):569.
9 Zhanna Y, Andrey B, Rustam K. Microstructural evolution of a 304-type austenitic stainless steel during rolling at temperatures of 773—1273 K [J]. Acta Mater,2015,82(1):244.
10 Chen F, Feng G W, Cui Z S. Mathematical modeling of critical condition for dynamic recrystallization [J]. Procedia Eng,2014,81:486.
11 Luton M J, Sellars C M. Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation [J]. Acta Metall,1969,17(8):1033.
12 Poliak E I, Jonas J J. Initiation of dynamic recrystallization in constant strain rate hot deformation [J]. Iron Steel Institute Japan Int,2003,43(5):684.
13 Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization [J]. Acta Mater,1996,44(1):127.
14 Sousa A C M, Selih J, Gerber A G, et al. Heat and fluid flow simulation of the melt-drag single-roll strip casting process [J]. J Mater Process Technol,1992,34(1):473.
15 Mirzadeh H, et al. Prediction of the critical conditions for initiation of dynamic recrystallization [J]. Mater Des,2010,31(3):1174.
16 Liu X G, Zhang L G, Qi R S, et al. Prediction of critical conditions for dynamic recrystallization in 316LN austenitic steel [J]. J Iron Steel Res,2016,23(3):238.
17 Fang B, Ji Z, Liu M, et al. Critical strain and models of dynamic recrystallization for FGH96 superalloy during two-pass hot deformation [J]. Mater Sci Eng A,2014,593:8.
18 Chen L, Zhang Y J, Li F, et al. Modeling of dynamic recrystallization behavior of 21Cr-11Ni-N-RE lean austenitic heat-resistant steel during hot deformation [J]. Mater Sci Eng A,2016,663:141.
19 Johnson W A, Mehl R F. Reaction kinetics in processes of nucleation and growth [J]. Trans Am Institute Mining,1939,135:416.
20 Avrami M. Kinetics of phase change. Ⅱ: Transformation-time relations for random distributuin of nuclei [J]. J Chem Phys,1940,8:212.
21 Sellars C M. Modelling microstructural development during hot rol-ling [J]. Mater Sci Technol,1990,6(11):1072.
22 Yada H. Prediction of microstructural changes and mechanical pro-perties in hot strip rolling [J]. Accelerated Cool Rolled Steel,1987,3:105.
23 Kim S I, Lee Y, Lee D L, et al. Modeling of AGS and recrystallized fraction of microalloyed medium carbon steel during hot deformation [J]. Mater Sci Eng A,2003,355:384.
24 Liu J,et al. A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B [J]. Mater Sci Eng A,2011,529:300.
25 Serajzadeh S, Taheri A K. Prediction of flow stress at hot working condition [J]. Mech Res Commun,2003,30:87.
26 Wan Z P, Sun Y, Hu L X, et al. Experimental study and numerical simulation of dynamic recrystallization behavior of TiAl-based alloy [J]. Mater Des,2017,122(15):11.
27 Gao Zhigang, Guo Hongzhen, Miao Xiaopu, et al. Work-hardening behavior of TC18 titanium alloy during hot processing associating K-M and E-M criterion [J]. Trans Mater Heat Treatment,2015,36(S2):223(in Chinese).
高志刚, 郭鸿镇, 苗小浦, 等. 协同K-M和E-M准则的TC18钛合金高温变形加工硬化行为[J]. 材料热处理学报,2015,36(S2):223.
28 Sakai T. Dynamic recrystallization microstructures under hot wor-king conditions [J]. J Mater Process Technol,1995,1:349.
29 Bergstro Y. A dislocation model for stress-train behavior of polycrystalline alpha-Fe with special emphasis on variation of densities of mobile and dislocations [J]. Mater Sci Eng A,1970,5(4):193.
30 Mecking H, Kocks U F. Kinetics of flow and strain-hardening [J]. Acta Metall,1981,29(11):1865.
31 Estrin Y, Mecking H. A unified phenomenological description of work-hardening and creep based on one-parameter models [J]. Acta Metall,1984,32(1):57.
32 Laasraoui A, Jonas J J. Recrystastallization of austenite after deformation at high temperature and strain rates-analysis and modelling [J]. Metall Trans A,1991,22(7):151.
33 Han Yawei, Su Juanhua, Ren Fengzhang, et al. Simulation of microstructure evolution of hot-deformed commercial pure titanium by Laasraoui-Jonas dislocation density model [J]. Trans Mater Heat Treatment,2014,35(11):210(in Chinese).
韩亚玮, 苏娟华, 任凤章, 等. 应用Laasraoui-Jonas 位错密度模型模拟工业纯钛微观组织演变[J]. 材料热处理学报,2014,35(11):210.
34 Gourdet S, Montheillet F. A model of continuous dynamic recrystallization [J]. Acta Mater,2003,51:2685.
35 Liu Xiao, Zhu Biwu, Li Luoxing. Dynamic recrystallization of AZ31 Magnesium alloy simulated by Laasraoui-Jonas dislocation equation coupled cellular automata method [J]. Chin J Nonferrous Met,2013,23(4):898(in Chinese).
刘筱, 朱必武, 李落星. Laasraoui-Jonas位错密度模型结合元胞自动机模拟AZ31镁合金动态再结晶[J]. 中国有色金属学报,2013,23(4):898.
36 Julien D J, Denis S, Olivier F, et al. 3D numerical modeling of dynamic recrystallization under hot working: Application to Inconel 718 [J]. Mater Sci Eng A,2015,646:33.
37 Ding R, Guo Z X. Microstructural modeling of dynamic recrystallization using an extended cellular automaton approach [J]. Comput Mater Sci,2002,23:209.
38 Roberts W, Ahlblom B. Nucleation criterion for dynamic recrystallization during hot working [J]. Acta Metall,1978,26(5):801.
39 Liu Y X, Lin Y C, Li H B, et al. Study of dynamic recrystallization in a Ni-based superalloy by experiments and cellular automaton mo-del [J]. Mater Sci Eng A,2015,626,432.
40 Zhao P Y, Thaddeus S E L, Wang Y Z, et al. An integrated full-field model of concurrent plastic deformation and microstructure evolution: Application to 3D simulation of dynamic recrystallization in polycrystalline copper [J]. Int J Plast,2016,80:38.
[1] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[2] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[3] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[4] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[5] 程晓农, 桂香, 罗锐, 杨雨童, 陈乐利, 王威, 王稳. 核电装备用奥氏体不锈钢的高温本构模型及动态再结晶[J]. 材料导报, 2019, 33(11): 1775-1781.
[6] 张永集, 吴光亮, 武尚文. Nb-Ti微合金高强钢动态再结晶动力学及临界条件[J]. 材料导报, 2018, 32(22): 3900-3907.
[7] 于江, 程龙, 李林萍, 叶奋, 宋卿卿. KSHD温拌剂对新疆岩沥青改性沥青老化动力特性的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2418-2424.
[8] 孙倩,陈冷. Cu-3.0Ni-0.64Si合金的热变形行为[J]. 材料导报编辑部, 2017, 31(22): 90-94.
[9] 王伟, 马瑞, 赵军, 翟瑞雪. 铸锻联合成形工艺晶粒分布预测协同仿真技术*[J]. 《材料导报》期刊社, 2017, 31(2): 150-154.
[10] 罗锐, 程晓农, 郑琦, 朱晶晶, 王皎, 刘天, 陈光, 杨乔. 新型含铝奥氏体耐热合金Fe-20Cr-30Ni-0.6Nb-2Al-Mo的动态再结晶行为*[J]. 《材料导报》期刊社, 2017, 31(18): 136-140.
[11] 贺毅强, 钱晨晨, 李俊杰, 周海生. 喷射沉积铝基复合材料再结晶控制与强韧化机制的研究现状*[J]. 《材料导报》期刊社, 2017, 31(17): 90-97.
[12] 戴青松, 欧世声, 邓运来, 付平, 张佳琪. 5083铝合金的热变形组织演变及晶粒度模型*[J]. 《材料导报》期刊社, 2017, 31(14): 143-146.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed