Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (14): 143-146    https://doi.org/10.11896/j.issn.1005-023X.2017.014.030
  计算模拟 |
5083铝合金的热变形组织演变及晶粒度模型*
戴青松1,2, 欧世声1, 邓运来1,3, 付平2, 张佳琪3
1 中南大学材料科学与工程学院, 长沙 410083;
2 广西柳州银海铝业股份有限公司, 柳州 545006;
3 中南大学轻合金研究院, 长沙 410083;
Microstructure Evolution and Grain Size Model of 5083 Aluminum Alloy During Hot Deformation
DAI Qingsong1,2, OU Shisheng1, DENG Yunlai1,3, FU Ping2, ZHANG Jiaqi3
1 School of Materials Science and Engineering, Central South University, Changsha 410083;
2 Guangxi Liuzhou Yinhai Aluminum Co., Ltd., Liuzhou 545006;
3 Light Alloy Research Institute, Central South University, Changsha 410083;
下载:  全 文 ( PDF ) ( 1529KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过等温压缩实验、光学显微镜与透射电镜研究了变形温度300~450 ℃、应变速率0.01~1 s-1、真应变0.36~1.2范围内变形条件对5083铝合金热变形组织演变的影响。结果表明:升高热变形温度或降低应变速率均可促进5083铝合金的动态再结晶发生,使变形后5083铝合金位错密度降低,再结晶晶粒尺寸增大;随着应变量的增加,变形后合金的位错密度降低,动态再结晶程度增大。根据唯象理论的指数模型,利用线性回归方法建立了5083铝合金动态再结晶晶粒度模型,模型计算值与实测值吻合良好,平均相对误差仅为4.6%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
戴青松
欧世声
邓运来
付平
张佳琪
关键词:  5083铝合金  热变形条件  微观组织  动态再结晶  晶粒度模型    
Abstract: The influences of hot deformation condition upon the microstructure of 5083 aluminum alloy during compressing in the temperature range of 300—450 ℃, the strain rate range of 0.01—1 s-1 and the strain range of 0.36—1.2 were studied by means of isothermal compressive deformation, optical microscopy and transmission electron microscopy. The results show that both the increase of deformation temperature and the decrease of strain rate benefit dynamic recrystallization, which results in the decrease of the dislocation density of 5083 aluminum alloy and the increase of the recrystallization grains size. With the increase of strain of 5083 aluminum alloy, the dislocation density decreases and the volume fraction of dynamic recrystallization increases. According to the exponential model of phenomenological theory and the linear regression method, the dynamic recrystallization grain size model of 5083 aluminum alloy during the thermoplastic deformation was constructed, and the model calculation value coincided well with the experimental data, as the average relative error was only 4.6%.
Key words:  5083 aluminum alloy    hot deformation condition    microstructure    dynamic recrystallization    grain size model
出版日期:  2017-07-25      发布日期:  2018-05-04
ZTFLH:  TG146.2+1  
基金资助: *广西科学研究与技术开发计划课题 (桂科重1598001-2;桂科重14122001-5)
作者简介:  戴青松:男,1989年生,博士研究生,研究方向为有色金属材料加工 E-mail:244034502@qq.com 邓运来:通讯作者,男,1969年生,博士,教授,博士研究生导师,研究方向为有色金属材料加工 E-mail:luckdeng@csu.edu.cn
引用本文:    
戴青松, 欧世声, 邓运来, 付平, 张佳琪. 5083铝合金的热变形组织演变及晶粒度模型*[J]. 《材料导报》期刊社, 2017, 31(14): 143-146.
DAI Qingsong, OU Shisheng, DENG Yunlai, FU Ping, ZHANG Jiaqi. Microstructure Evolution and Grain Size Model of 5083 Aluminum Alloy During Hot Deformation. Materials Reports, 2017, 31(14): 143-146.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.014.030  或          https://www.mater-rep.com/CN/Y2017/V31/I14/143
1 Zhang Haiyong, Yan Haipeng, Cao Jingyi, et al. Research on corrosion behavior of AA5083 Al alloy in seawater[J]. Mater Rev: Res,2015,29(11):105(in Chinese).
张海永, 闫海鹏, 曹京宜, 等. AA5083铝合金在海水中的腐蚀行为研究[J]. 材料导报:研究篇,2015,29(11):105.
2 Xu Xuefeng. Research on mechanical behavior and simulation and experiment of superplastic forming of 5083 alumimun alloy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2009(in Chinese).
徐雪峰. 5083铝合金力学性能及超塑性成型数值模拟与实验研究[D]. 南京:南京航空航天大学,2009.
3 Cheng Sonyi, Cheng Kanghua, Jia Le, et al. Effect of hot deformation conditions on grain structure and properties of 7085 aluminum alloy [J]. Trans Nonferr Met Soc China,2013,23(2):329.
4 Liu Wenyi, Zhao Huan, Li Dan, et al. Hot deformation behavior of AA7085 aluminum alloy during is othermal compression at elevated temperature [J]. Mater Sci Eng A,2014,596:176.
5 Jiang Fulin, Zhang Hui, Meng Chunbiao, et al. Recrystallization of 3104 aluminum alloy during compression at elevated temperature[J]. Trans Mater Heat Treat,2011,32(3):52 (in Chinese).
蒋福林, 张辉, 蒙春标, 等. 3104 铝合金高温热压缩过程的再结晶[J]. 材料热处理学报,2011,32(3):52.
6 Zou B, Chen Z Q , Liu J H, et al. Microstructure evolution of hea-vily deformed AA5083 Al-Mg alloy studied by positron annihilation spectroscopy[J]. Appl Surf Sci,2014,296:154.
7 Lin Shuangping, Nie Zuoren, Huang Hui, et al. Annealing behavior of a modified 5083 aluminum alloy[J]. Mater Des,2010,31:1607.
8 Lee Y B, Shin D H, Park K T, et al. Effect of annealing temperature on microstructures and mechanical properties of a 5083 Al alloy deformed at cryogenic temperature[J]. Scr Mater,2004,51:355
9 Wu Wenxiang, Sun Deqin, Cao Chunyan, et al. Flow stress beha-vior of 5083 aluminum alloy under hot compression deformation[J]. Chin J Nonferr Met,2007,17(10):1667 (in Chinese).
吴文祥, 孙德勤, 曹春艳, 等. 5083铝合金热压缩变形流变应力行为[J]. 中国有色金属学报,2007,17(10):1667.
10 Zhang Fei, Shen Jian, Yan Xiaodong, et al. Dynamic softening mechanism of 2099 alloy during hot deformation process[J]. Acta Metall Sin,2014,50(6):691(in Chinese).
张飞, 沈建, 闫晓东, 等. 2099合金热变形过程中的动态软化机制[J].金属学报,2014,50(6):691.
11 Chen Guiqing, Fu Gaosheng, Yan Wenyan, et al. Experimental research on dynamic recrystallization of 3003 aluminum alloy[J]. J Mater Eng,2011(8):77 (in Chinese).
陈贵清, 傅高升, 颜文煅, 等. 3003铝合金动态再结晶实验研究[J]. 材料工程,22011(8):77.
12 Yang Dong, et al. Dynamic recrystallization grain size evolution model of 7075 aluminum alloy during hot deformation[J]. Trans Nonferr Met Soc China,2013,23(10):2747 (in Chinese).
杨栋,等. 7075铝合金热变形时动态再结晶晶粒度演化模型[J]. 中国有色金属学报,2013,23(10):2747.
13 Zhang Hui, Yang Libin, Peng Dashu, et al. Numerical simulation on microstructural evolution during multipass hot-rolling of aluminum alloys[J]. Trans Nonferr Met Soc China,2001,11(2):230.
14 Huang Xudong, Zhang Hui, Han Yi, et al. Hot deformation beha-vior of 2026 aluminum alloy during compression at elevated temperature [J]. Mater Sci Eng A,2010,527:485.
15 Li Zhoubing, Shen Jian, Yan Liangming, et al. Effects of strain rate on microstructure and mechanical properties of 7055 aluminum alloy[J]. Rare Met,2010,34(5):643 (in Chinese).
李周兵, 沈健, 闫亮明, 等. 应变速率对7055铝合金显微组织和力学性能的影响[J]. 稀有金属,2010,34(5):643.
16 Zhen Liang, Hu Huie, Wang Xinyun, et al. Distribution characte-rization of boundary misorientation angle of 7050 aluminum alloy after high-temperature compression[J]. J Mater Process Technol,2009,209:754.
17 Gourdet S, Montheillet F. A model of continuous dynamic recrystallization[J]. Acta Mater,2003,51:2685.
18 Livan F, Gianluca B. CDRX modelling in friction stir welding of aluminum alloys[J]. Int J Machine Tools Manuf,2005,45:1188.
[1] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[2] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[3] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[4] 赵言, 唐建国, 张勇, 郑许, 赵辉. 应变速率对7065铝合金等温压缩软化机制的影响[J]. 材料导报, 2024, 38(8): 22080187-6.
[5] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[6] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[7] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[8] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[9] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[10] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[11] 朱轩,杨晓益, 陆鑫, 杨书汉. 电弧脉冲对6005A-T6铝合金CMT-P焊接接头组织和性能的影响[J]. 材料导报, 2024, 38(23): 23090035-7.
[12] 王沛锦, 卓家乐, 艾桃桃, 董洪峰. L12型纳米有序相析出强化(FeNiCoCr)93Al5Ti2高熵合金[J]. 材料导报, 2024, 38(22): 23110207-5.
[13] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[14] 孙文明, 李韶林, 宋克兴, 王强松, 丁宗业, 朱莹莹. 铸态Cu-1.16Ni-0.36Cr合金热变形行为及热加工图[J]. 材料导报, 2024, 38(2): 22040205-8.
[15] 郭伟玲, 邢志国, 李鹏, 马国政, 王海斗. 冷喷涂铜基复合涂层及后处理技术的研究现状[J]. 材料导报, 2024, 38(19): 23010049-13.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed