Please wait a minute...
材料导报  2019, Vol. 33 Issue (11): 1775-1781    https://doi.org/10.11896/cldb.18060090
  核材料 |
核电装备用奥氏体不锈钢的高温本构模型及动态再结晶
程晓农, 桂香, 罗锐, 杨雨童, 陈乐利, 王威, 王稳
江苏大学材料科学与工程学院,镇江 212013
Constitutive Equation and Dynamic Recrystallization Behavior of 316L Austenitic Stainless Steel for Nuclear Power Equipment
CHENG Xiaonong, GUI Xiang, LUO Rui, YANG Yutong, CHEN Leli, WANG Wei, WANG Wen
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013
下载:  全 文 ( PDF ) ( 2546KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用热模拟压缩实验研究核电装备用316L奥氏体不锈钢在变形温度为900~1 100 ℃、应变速率为0.01~5 s-1时的高温变形行为。根据压缩实验数据绘制流变应力曲线;基于Arrhenius关系并考虑应变量因素,建立耦合应变量因素的改进型本构方程;结合光学显微镜(OM)观察材料变形过程中微观组织的特征;根据加工硬化率-流动应力曲线确定316L不锈钢的动态再结晶临界应变并基于Avrami方程建立其动态再结晶体积分数模型。结果表明:在316L不锈钢热变形过程中,较低的温度和较快的应变速率对应的流变应力也较大;耦合应变量因素的本构模型预测316L不锈钢的流变应力,预测值与实验值的相关系数为0.986 88,平均相对误差仅4.6%,该模型能较好地预测316L不锈钢在热变形过程中的变形抗力。316L不锈钢易在高温、低速的加工条件下发生动态再结晶行为,其动态再结晶体积分数与应变呈S形变化。该模型所得的预测值与实验数据之间的相关性较好,能很好地预测316L不锈钢在热加工过程中发生动态再结晶的体积分数。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程晓农
桂香
罗锐
杨雨童
陈乐利
王威
王稳
关键词:  316L不锈钢  应力-应变曲线  热变形  动态再结晶    
Abstract: The hot deformation behavior of 316L austenitic stainless steel used in nuclear power equipment was studied by hot compression tests in the temperature range of 900—1 100 ℃, and in the strain rate range of 0.01—5 s-1. According to the data of hot compressive experiment, the flow stress curves of 316L under different deformation conditions were plotted. The constitutive model considering the compensation of strain for predicting the flow stress of 316L under all test conditions was developed on the basis of Arrhenius-type equation. The microstructural evolution of 316L during deformation was observed via an optical microscope. The critical strain of dynamic recrystallization of 316L stainless steel is identified based on the work hardening rate versus flow stress curves. The DRX kinetics for 316L can be represented in the form of Avrami equation. The results show that either decreasing deformation temperature or increasing strain rate makes the flow stress level reduce remarkably. The accuracy of the developed model was evaluated using standard statistical parameters such as correlation coefficient and average absolute relative error. It suggested that this developed constitutive equation could accurately predict high temperature flow behaviors of 316L. It is found that the DRX mainly occurred at high strain rates and high temperatures. The DRX volume fraction increased towards 1.0 with an increase in strain in terms of the S-shape and the predicted volume fraction of new grains based on the developed model agrees well with the experimental results.
Key words:  316L stainless steel    stress-strain curves    hot deformation    dynamic recrystallization
                    发布日期:  2019-05-21
ZTFLH:  TG142.71  
基金资助: “十二五” 国家高技术研究发展计划(863计划)重大项目(2012AA03A501)
通讯作者:  xncheng@mail.ujs.edu.cn   
作者简介:  程晓农,博士研究生导师,历任江苏大学副校长,兼任江苏省优势学科带头人。长期从事材料科学与工程领域的教学与科研工作,培养研究生近50名。围绕新型金属材料的研制、开发、应用及可靠性和先进的材料加工工艺展开了大量的科学研究工作,主要研究方向为高性能新材料的设计和材料的表面强化与功能化。在《机械工程学报》等国内期刊以及Acta Metallurgica SinicaMaterials Science and Engineering等国外学术刊物上公开发表论文百余篇。程晓农教授先后被评为优秀科技工作者、有突出贡献的中青年专家、江苏省冶金协会和金属学会副理事长。
引用本文:    
程晓农, 桂香, 罗锐, 杨雨童, 陈乐利, 王威, 王稳. 核电装备用奥氏体不锈钢的高温本构模型及动态再结晶[J]. 材料导报, 2019, 33(11): 1775-1781.
CHENG Xiaonong, GUI Xiang, LUO Rui, YANG Yutong, CHEN Leli, WANG Wei, WANG Wen. Constitutive Equation and Dynamic Recrystallization Behavior of 316L Austenitic Stainless Steel for Nuclear Power Equipment. Materials Reports, 2019, 33(11): 1775-1781.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060090  或          http://www.mater-rep.com/CN/Y2019/V33/I11/1775
1 Zhao M, Chai L J, Yuan S S, et al. Journal of Chongqing University of Technology (Natural Science),2018,32(1),135(in Chinese).
赵漫,柴林江,袁珊珊,等.重庆理工大学学报(自然科学),2018,32(1),135.
2 Li N, Shi S, Luo J, et al. Surface & Coatings Technology,2017,309,227.
3 Zietala M, Durejko T, Polański M, et al. Materials Science & Enginee-ring A,2016,677,1.
4 Shi J, Zhang W Q, Guo J. Materials Review B:Research Papers,2010,24(2),82(in Chinese).
是晶,张伟强,郭金.材料导报:研究篇,2010,24(2),82.
5 Wu H, Wen S P, Huang H, et al. Materials Science & Engineering A,2016,651,415.
6 Pu E, Zheng W, Xiang J, et al. Acta Metallurgica Sinica,2014,27(2),313.
7 Song R P, Xiang J Y, Liu L Y, et al. Materials for Mechanical Enginee-ring, 2010,34(6),85(in Chines).
宋仁伯,项建英,刘良元,等.机械工程材料,2010,34(6),85.
8 Pilehva F, Zarei-Hanzaki A, Ghambari M, et al. Materials & Design,2013,51(5),457.
9 Sun C Y, Luan J D, Liu C. Acta Metallurgica Sinica,2012,48(7),853(in Chinese).
孙朝阳,栾京东,刘赓,等.金属学报,2012,48(7),853.
10 Wu Y, Yi N, Qiao H J, et al. Rare Metal Materials & Engineering,2013,42(10),2117(in Chinese).
武宇,宜楠,乔慧娟,等.稀有金属材料与工程,2013,42(10),2117.
11 Luo R, Cheng X N, Xu G F, et al. Journal of Functional Materials,2016,47(s1),89(in Chinese).
罗锐,程晓农,徐桂芳,等.功能材料,2016,47(s1),89.
12 Xiang J Y, Song R P, Ren P D. Chinese Journal of Engineering,2009,31(12),1555(in Chinese).
项建英,宋仁伯,任培东.工程科学学报,2009,31(12),1555.
13 Zener C, Hollomon J H. Journal of Applied Physics,1944,15(1),22.
14 Fang X L, Jiang D J. Journal of Materials Science,2011,46(10),3646.
15 Suzuki A, Pollock T M. Acta Materialia,2008,56(6),1288.
16 Kugler G, Turk R. Acta Materialia,2004,52(15),4659.
17 Nkhoma R, Siyasiya C W, Stumpf W E. Journal of Alloys & Compounds,2014,595(13),103.
18 Wang C J, Han F, Zheng W J, et al. Journal of Iron and Steel Research (International),2013,20(10),107.
19 He A, Xie G, Zhang H, et al. Materials & Design,2014,56(4),122.
20 Luo R, Cheng X N, Xu G F, et al. Chinese Journal of Rare Metals,2017(2),132(in Chinese).
罗锐,程晓农,徐桂芳,等.稀有金属,2017(2),132.
21 Xu Z H, Li H, Li M Q. The Chinese Journal of Nonferrous Metals,2017,27(8),1551(in Chinese).
许赵华,李宏,李淼泉.中国有色金属学报,2017,27(8),1551.
22 Poliak E I, Jonas J J. Acta Materialia,1996,44(1),127.
23 Momeni A, Dehghani K. Metallurgical & Materials Transactions A,2011,42(7),1925.
24 Zhang C, Zhang L, Shen W, et al. Materials & Design,2016,90,804.
25 Wei H L, Liu G Q, Xiao X, et al. Materials Science & Engineering A,2013,573(3),215.
26 Lv B J, Peng J, Wang Y J, et al. Materials & Design,2014,53(1),357.
27 Zou D N, Liu R, Han Y, et al. Materialsence & Technology,2014,30(4),411.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 汪可华, 陈坚, 王福德, 梁晓康, 孙正明. 材料应力-应变的球形纳米压入法研究进展[J]. 材料导报, 2019, 33(9): 1490-1499.
[3] 高志玉, 盛凯, 康宇, 张旭, 潘涛. 一种新型高淬透性Ni-Cr-Mo-B钢的热变形本构分析[J]. 材料导报, 2019, 33(4): 694-698.
[4] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[5] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[6] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[7] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[8] 张永集, 吴光亮, 武尚文. Nb-Ti微合金高强钢动态再结晶动力学及临界条件[J]. 材料导报, 2018, 32(22): 3900-3907.
[9] 孙倩,陈冷. Cu-3.0Ni-0.64Si合金的热变形行为[J]. 材料导报编辑部, 2017, 31(22): 90-94.
[10] 王伟, 马瑞, 赵军, 翟瑞雪. 铸锻联合成形工艺晶粒分布预测协同仿真技术*[J]. 《材料导报》期刊社, 2017, 31(2): 150-154.
[11] 罗锐, 程晓农, 郑琦, 朱晶晶, 王皎, 刘天, 陈光, 杨乔. 新型含铝奥氏体耐热合金Fe-20Cr-30Ni-0.6Nb-2Al-Mo的动态再结晶行为*[J]. 《材料导报》期刊社, 2017, 31(18): 136-140.
[12] 贺毅强, 钱晨晨, 李俊杰, 周海生. 喷射沉积铝基复合材料再结晶控制与强韧化机制的研究现状*[J]. 《材料导报》期刊社, 2017, 31(17): 90-97.
[13] 戴青松, 欧世声, 邓运来, 付平, 张佳琪. 5083铝合金的热变形组织演变及晶粒度模型*[J]. 《材料导报》期刊社, 2017, 31(14): 143-146.
[14] 孙宇, 周琛, 万志鹏, 任丽丽, 胡连喜. 金属材料动态再结晶模型研究现状*[J]. 《材料导报》期刊社, 2017, 31(13): 12-16.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed