Please wait a minute...
材料导报  2019, Vol. 33 Issue (9): 1490-1499    https://doi.org/10.11896/cldb.18060052
  无机非金属及其复合材料 |
材料应力-应变的球形纳米压入法研究进展
汪可华1, 陈坚1, 王福德2, 梁晓康2, 孙正明1
1 东南大学材料科学与工程学院,南京 211189
2 首都航天机械有限公司,北京 100076
Progress in Stress-Strain Relationship Using Spherical Nanoindentation
WANG Kehua1, CHEN Jian1, WANG Fude2, LIANG Xiaokang2, SUN Zhengming1
1 School of Materials science and Engineering, Southeast University, Nanjing 211189
2 Capital Aerospace Machinery Company Co., Ltd, Beijing 100076
下载:  全 文 ( PDF ) ( 2517KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 应力-应变(σ-ε)关系是材料设计和开发的重要指标。单轴拉伸与压缩实验是获得材料应力-应变关系的重要手段,然而受限于尺寸要求,它们难以应用于微纳米尺度下的表征。基于深度敏感的仪器化纳米压入仪具有高的载荷和位移精度,被广泛应用于研究微纳尺度材料的力学性能,例如弹性模量、硬度、应变速率敏感指数与蠕变参数等。近年来国内外研究者开展了从纳米压入的载荷-位移(P-h)曲线中直接获取材料完整σ-ε关系的研究,其中球形压头具有平滑与非自相似应力应变场,得到了广泛关注。
球形压入分析的难点在于被压材料处于三轴应力状态,不均匀的应力应变分布使得压入应力与压入应变难以直接测量。为简化分析,研究者们提出了诸多定义,例如不同的压入应变、代表性应力和代表性应变定义等。其分析方法也纷杂各异,根据实现过程可大致分为经验物理法以及模拟分析法两大类。在经验物理法中,通过定义压入区域内代表性应力与代表性应变,并分别将它们近似为单轴塑性流变的应力与应变,从而实现P-h曲线到σ-ε关系的转换。该种方法简单易行且得到广泛应用,但其结果依赖于上述代表性物理量的选取与定义,并对实验测量精度非常敏感。在模拟分析法中,研究者首先通过模拟计算不同本构方程,假想材料的压入P-h曲线,然后建立其与本构方程参数之间的函数关系,以实现从实验P-h结果到材料σ-ε关系的反演分析。可见建立准确的函数关系是该方法的核心,常用的方法有量纲分析和曲线拟合两类,然而目前函数的稳定性和适用性仍是限制其广泛应用的重要因素。近年来,基于计算机科学与技术的快速发展,研究者们通过引入新型算法以智能的方式筛选材料力学参数,实现预测结果与实验值的最佳匹配,这类方法展现出了巨大的发展潜力。
综上,本文分别从经验物理法和模拟分析法综述了应力-应变关系的球形压入方法的研究进展,对压入基本概念模型、物理量的定义以及方法的建立进行了系统介绍,并对比了各自的优势和不足,以期为微纳米尺度下的力学研究提供实验和应用参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪可华
陈坚
王福德
梁晓康
孙正明
关键词:  应力-应变曲线  球形压头  纳米压入  载荷-位移曲线  经验物理法  模拟分析法    
Abstract: Stress-strain (σ-ε) relationship is the important guidance for materials design and development. The uniaxial tensile and compression testing are commonly used to obtain the σ-ε relationship of materials. However, suffered from the limitation of sample shape and size, these conventional approaches can hardly apply to the materials in micro/nano scale. Benefiting from the high resolutions of load and depth, instrumented nanoindentation based upon depth-sensoring technique has been widely used to extract mechanical properties (such as Young’s modulus, hardness, strain rate sensitivity exponent and creep parameters) at micro/nano scales. In recent years, researchers have developed novel protocols to extract σ-ε curves from load-depth (P-h) curves. Among these studies, the spherical indenter attract considerable attention as it possesses smooth and non-self-similar distribution of stress.
The major challenge for analyzing the spherical indentation lies in the three axial states of the material under the rigid indenter, and the heterogeneous distributions of stress and strain make the direct measurement difficult to realize. For the sake of simplifying the analysis, various definitions, such as indentation strain, representative stress and representative strain, are introduced. Moreover, there are diverse analysis approaches as well, which can be classified into the empirical physics method and the simulation analysis method according the analysis procedure.As regard to empirical physics method, the transition between P-h curve and σ-ε are conducted by defining represen-tative stress and representative strain of the primary indentation zone, which are equivalent to uniaxial flow stress and strain, respectively. This approach is simple and has been validated on a broad variety of materials, nevertheless, the results strongly depend on the reliable definition of corresponding physical quantities and exhibit great sensitivity to the precision of experimental measurement.Concerning the simulation analysis method, the indentation P-h curves are firstly obtained by simulation with a wide range of constitutive para-meter, and then a function is derived by the analysis of P-h curves and the constitutive equation, finally the σ-ε can be inversely determined from the experimental P-h. Obviously, the establishment of the function is critical for this method, and the commonly employed approaches consist of dimension analysis and curve fitting. However, the stability and applicability of these functions constitute the major bottlenecks that hinder their widespread applications. Very recently, thanks to the fast development of compu-ter science and technology, researchers adopt algorithms to screen constitutive parameter intelligently, achieving a good agreement between predicted data and experimental results. Such novel analysis has shown great potentials in measuring the mechanical properties of materials.
In summary, we offers a retrospection of the research efforts with respect to the extraction of σ-ε relationship from spherical nanoindentation from empirical physics and simulation analysis in this article. The basic concept and model, definitions of related physical quantities and establishment of these methods are summarized. Moreover, their merits and drawbacks are also discussed to provide experimental and guidance for the mechanical characterization at micro/nano scales.
Key words:  stress-strain curve    spherical indenter    nanoindentation    load-depth curve    empirical physics method    simulation analysis method
               出版日期:  2019-05-10      发布日期:  2019-05-08
ZTFLH:  TH140  
基金资助: 国家自然科学基金(11472080);一院高校联合创新基金(CALT201709)
通讯作者:  j.chen@seu.edu.cn   
作者简介:  汪可华,2017年7月毕业于安徽工业大学,获得工学学士学位。现为东南大学材料科学与工程学院硕士研究生,在陈坚教授和孙正明教授指导下从事微纳米力学和激光选区熔化(SLM)钛合金的力学性能研究。陈坚,东南大学材料学院教授、博士生导师。主要从事多场微纳米力学与储能材料开发等研究。王福德,航天科技集团第一研究院211厂研究员、总工艺研究师。中国航天科技集团增材制造工艺技术带头人,中组部千人计划。长期从事激光增材和电弧熔丝增材制造技术研究,在国内国际重要期刊上发表学术论文30多篇。孙正明,国家特聘专家、东南大学教授、博导。南京工学院材料系(现东南大学材料学院前身)第一届毕业生,中科院金属所硕士,中科院金属所-维也纳大学联合培养博士。先后在中科院、维也纳大学(博士后)、日本丰桥技科大学(JSPS)、美国德雷克赛尔大学(学术休假)工作。
引用本文:    
汪可华, 陈坚, 王福德, 梁晓康, 孙正明. 材料应力-应变的球形纳米压入法研究进展[J]. 材料导报, 2019, 33(9): 1490-1499.
WANG Kehua, CHEN Jian, WANG Fude, LIANG Xiaokang, SUN Zhengming. Progress in Stress-Strain Relationship Using Spherical Nanoindentation. Materials Reports, 2019, 33(9): 1490-1499.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060052  或          http://www.mater-rep.com/CN/Y2019/V33/I9/1490
1 Field J S, Swain M V A. Journal of Materials Research,1993,8(2),297.
2 Kalidindi S R, Pathak S. Acta Materialia,2008,56(14),3523.
3 Oliver W C, Pharr G M, et al. Journal of Materials Research,1992,7(6),1564.
4 Zhang T H, Yang Y M. Modern Scientific Instruments,2002(1),32(in Chinese).
张泰华,杨业敏.现代科学仪器,2002(1),32.
5 Zhao Z X, Wang H R, Jiang Z D. Journal of Mechanical Strength,2001,23(4),456(in Chinese).
赵则祥,王海容,蒋庄德.机械强度,2001,23(4),456.
6 Basu S, Moseson A, Barsoum M W. Journal of Materials Research,2006,21(10),2628.
7 Pathak S, Stojakovic D, Kalidindi S R. Acta Materialia,2009,57(10),3020.
8 Pathak S, Kalidindi S R. Materials Science & Engineering: R: Reports,2015,91,1.
9 Vachhani S J, Kalidindi S R. Acta Materialia,2015,90,27.
10Zhang T H, Yang Y M. Advances in Mechanics,2002,32(3),349(in Chinese).
张泰华,杨业敏.力学进展,2002,32(3),349.
11Swain M V. Materials Science & Engineering: A,1998,253(1/2),160.
12He L H, Swain M V. Dental Materials,2007,23(7),814.
13Tabor D. The hardness of metals, Oxford University Press, UK,1951.
14Hertz H. Miscellaneous papers, MacMillan London, UK,1896.
15Fischer-Cripps A C. Nanoindentation Testing, Springer New York, USA,2011.
16Sneddon I N. International Journal of Engineering Science,1965,3(1),47.
17Guo S, Kang G, Zhang J. International Journal of Plasticity,2013,40(1),101.
18Xu B, Chen X. Journal of Materials Research,2010,25(12),2297.
19Clough R B, Webb S C. Materials Science & Engineering: A,2003,360(1/2),396.
20Schindler H J. International Journal of Solids & Structures,2005,42(2),717.
21Patel D K, Kalidindi S R. Acta Materialia,2016,112,295.
22Jeong-Hoon A, Dongil K. Journal of Materials Research,2001,16(11),3170.
23Milman Y V, Galanov B A, Chugunova S I. Acta Metallurgica Et Mate-rialia,1993,41(9),2523.
24Field J S, Swain M V. Journal of Materials Research,1995,10(1),101.
25Swain M V. Materials Science & Engineering: A,1998,253(1/2),160.
26Herbert E G, Pharr G M, Oliver W C, et al. Thin Solid Films,2001,398(399),331.
27Fischer-Cripps A C. Vacuum,2000,58(4),569.
28Johnson K L. Contacts mechanics, Cambridge University Press, UK,1985.
29Taljat B, Zacharia T, Kosel F. International Journal of Solids and Structures,1998,35(33),4411.
30Tabor D. Proceedings of the Royal Society A,1948,192(1029),247.
31Donohue B R, Ambrus A, Kalidindi S R. Acta Materialia,2012,60(9),3943.
32Murugaiah A, Barsoum M W, Kalidindi S R, et al. Journal of Materials Research,2004,19(4),1139.
33Barsoum M W, Zhen T, Kalidindi S R, et al. Nature Materials,2003,2(2),107.
34Pathak S, Cambaz Z G, Kalidindi S R, et al. Carbon,2009,47(8),1969.
35Pathak S, Kalidindi S R, Klemenz C, et al. Journal of the European Ceramic Society,2008,28(11),2213.
36Pathak S, Vachhani S J, Jepsen K J, et al. Journal of the Mechanical Behavior of Biomedical Materials,2012,13(9),102.
37Weaver J S, Khosravani A, Castillo A, et al. Integrating Materials & Manufacturing Innovation,2016,5(1),10.
38Weaver J S, Kalidindi S R. Materials & Design,2016,111,463.
39Weaver J S, Priddy M W, Mcdowell D L, et al. Acta Materialia,2016,117,23.
40Francis H A. Journal of Engineering Materials & Technology Transactions of the Asme,1976,98(3),272.
41Johnson K L. Journal of the Mechanics & Physics of Solids,1970,18(2),115.
42Park Y J, Pharr G M. Thin Solid Films,2004,447(3),246.
43Mesarovic S D, Fleck N A. Proceedings Mathematical Physical & Engineering Sciences,1999,455(1987),2707.
44Leitner A, Maier-Kiener V, Kiener D. Materials & Design,2018,146,69.
45Hay J L, Olive W C, Bolshakov A, et al. MRS Proceedings,1998,522,101.
46Iskakov A, Yabansu, Y C, Rajagopalan, S, et al. Acta Materialia,2018,144,758.
47Ma D, Ong C W, Lu J, et al. Journal of Applied Physics,2003,94(1),288.
48Gu Y, Nakamura T, Prchlik L, et al. Materials Science & Engineering: A,2003,345(1),223.
49Nayebi A, Abdi R E, Bartier O, et al. Mechanics of Materials,2002,34(4),243.
50Beghini M, Bertini L, Fontanari V. International Journal of Solids and Structures,2006,43(7),2441.
51Cao Y P, Lu J. Acta Materialia,2004,52(13),4023.
52Cao Y, Qian X, Huber N. Materials Science & Engineering: A,2011,454(16),1.
53Dao M, Chollacoop N, Vliet K J V, et al. Acta Materialia,2001,49(19),3899.
54Zhang T H. Micro/nano mechanical testing technology and its application, Machinery Industry Press, China,2005(in Chinese).
张泰华.微/纳米力学测试技术及其应用,机械工业出版社,2005.
55Zhao M, Ogasawara N, Chiba N, et al. Acta Materialia,2006,54(1),23.
56Ogasawara N, Chiba N, Chen X. Mechanics of Materials,2009,41(9),1025.
57Jiang P, Zhang T H, Yang R, et al. Acta Mechanica Sinica,2009,41(5),730(in Chinese).
姜鹏,张泰华,杨荣,等.力学学报,2009,41(5),730.
58Collin J M, Mauvoisin G, Abdi R E. Mechanics of Materials,2008,40(4/5),401.
59Collin J M, Mauvoisin G, Pilvin P, et al. Materials Science & Enginee-ring: A,2008,488(1/2),608.
60Beghinf M, Bertinf L, Fontanari V, et al. Procedia Engineering,2011,10,1679.
61Collin J M, Mauvoisin G, Pilvin P. Materials & Design,2010,31(1),636.
62Nakamura T, Wang T, Sampath S. Acta Materialia,2000,48(17),4293.
63Fernandez-Zelaia P, Joseph V R, Kalidindi S R, et al. Materials & Design,2018,147,92.
64Wang M, Wu J, Hui Y, et al. Materials Science & Engineering: A,2017,679,143.
65Huber N, Tsakmakis C. Journal of the Mechanics & Physics of Solids,1999,47(7),1569.
66Huber N, Tsakmakis C. Journal of the Mechanics & Physics of Solids,1999,47(7),1589.
67Cecen A, Dai H, Yabansu Y C, et al. Acta Materialia,2018,146,76.
68Collin J M, Parenteau T, Mauvoisin G, et al. Computational Materials Science,2009,46(2),333.
69Moussa C, Bartier O, Mauvoisin G, et al. Journal of Materials Research,2012,27(1),20.
70Dean J, Clyne T W. Mechanics of Materials,2017,105,112.
71Campbell J E, Kalfhaus T, Vassen R, et.al. Acta Materialia,2018,154,237.
[1] 程晓农, 桂香, 罗锐, 杨雨童, 陈乐利, 王威, 王稳. 核电装备用奥氏体不锈钢的高温本构模型及动态再结晶[J]. 材料导报, 2019, 33(11): 1775-1781.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed