Please wait a minute...
材料导报  2019, Vol. 33 Issue (24): 4117-4121    https://doi.org/10.11896/cldb.18110190
  金属及金属基复合材料 |
Mg-8Gd-0.5Zr合金热压缩过程中动态再结晶行为
朱利敏1,2, 李全安1,2, 陈晓亚1,3, 张清1,2, 王颂博1, 张帅1
1 河南科技大学材料科学与工程学院,洛阳 471023
2 有色金属共性技术河南省协同创新中心,洛阳 471023
3 西安理工大学材料科学与工程学院,西安 740048
Dynamic Recrystallization Behavior of Mg-8Gd-0.5Zr Alloy During Hot Compression Deformation
ZHU Limin1,2, LI Quanan1,2, CHEN Xiaoya1,3, ZHANG Qing1,2, WANG Songbo1, ZHANG Shuai1
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023
2 Collaborative Innovation Center of Nonferrous Metal, Henan Province, Luoyang 471023
3 School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 740048
下载:  全 文 ( PDF ) ( 3021KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 将Mg-8Gd-0.5Zr合金在350~500 ℃、应变速率为0.002~1 s-1范围内进行热压缩实验,研究合金的流变应力行为,观察热压缩后的组织,分析动态再结晶晶粒尺寸和温度的关系,并利用加工硬化率的方法计算合金的再结晶临界应变(εc)。结果表明:Mg-8Gd-0.5Zr合金热压缩流变曲线符合动态再结晶的特征,随着温度升高或者应变速率的减小,峰值应力下降,且峰值应力对应的峰值应变(εp)也降低。在350~450 ℃范围内,再结晶晶粒细小,且其随温度升高增长较慢;而温度在450~500 ℃范围内,再结晶晶粒尺寸迅速长大至约25 μm。根据加工硬化率的计算及组织分析,发现动态再结晶先于峰值应变发生,峰值应变和临界应变的关系为εc=0.442εp,同时构建了再结晶的临界模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱利敏
李全安
陈晓亚
张清
王颂博
张帅
关键词:  Mg-8Gd-0.5Zr合金  热压缩  动态再结晶  临界应变    
Abstract: The hot deformation behaviors of Mg-8Gd-0.5Zr was studied by hot compression tests in the temperature range of 350—500 ℃ under strain rates of 0.002—1 s-1. The flow stress and microstructures of the alloy were discussed. The relationship between grain size of dynamic recrystallization (DRX) and temperature were analyzed. The critical strain (εc) of DRX was calculated. Results showed that the flow stress curves conformed to the characteristic of dynamic recrystallization. The peak stress decreased as the temperature increased or the strain rate decreased, and the peak strain (εp) also decreased. The dynamically recrystallized (DRXed) grains were fine in the range of 350—450 ℃, and the grain size increased slowly but increased rapidly in 450—500 ℃. The grain size of DRX was 25 μm after hot compression in 500 ℃. According to calculation of work hardening rate, it was found that the DRX occured prior to peak strain. The relationship between peak strain and critical strain was εc=0.442εp. The critical model of recrystallization was established.
Key words:  Mg-8Gd-0.5Zr alloy    hot compression    dynamic recrystallization    critical strain
               出版日期:  2019-12-25      发布日期:  2019-10-28
ZTFLH:  TG146.2.2  
基金资助: 国家自然科学基金(51571084)
作者简介:  朱利敏,2014年毕业于辽宁工程技术大学,获得工程硕士学位。2014年7月就职于河南科技大学,副教授,主要从事高性能镁合金的设计与开发,在国内外期刊上发表研究论文20余篇;李全安,河南科技大学,教授。目前主要从事稀土功能材料、稀土镁合金、稀土铝合金、稀土表面改性等研究。主持国家自然科学基金、河南省杰出人才基金、河南省杰出青年基金等项目10余项。发表研究论文300余篇,获国家发明专利授权20余项。
引用本文:    
朱利敏, 李全安, 陈晓亚, 张清, 王颂博, 张帅. Mg-8Gd-0.5Zr合金热压缩过程中动态再结晶行为[J]. 材料导报, 2019, 33(24): 4117-4121.
ZHU Limin, LI Quanan, CHEN Xiaoya, ZHANG Qing, WANG Songbo, ZHANG Shuai. Dynamic Recrystallization Behavior of Mg-8Gd-0.5Zr Alloy During Hot Compression Deformation. Materials Reports, 2019, 33(24): 4117-4121.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110190  或          http://www.mater-rep.com/CN/Y2019/V33/I24/4117
1 Muzyk M, Pakiela Z, Kurzydlowski K J. Scripta Materialia, 2012, 66(5), 219.2 Sandlöbes S, Friák M, Zaefferer S, et al. Acta Materialia, 2012, 60(6-7), 3011.3 Zhang J, Dou Y, Liu G, et al. Computational Materials Science, 2013, 79, 564.4 Wu R Y, Yang M B, Bi Y, et al. Journal of Chongqing University of Technology (Natural Science), 2017, 31(11), 65(in Chinese).吴若愚,杨明波,毕媛, 等. 重庆理工大学学报(自然科学), 2017, 31(11), 65.5 Huang G J, Qian B H, Wang L Y, et al. Rare Metal Materials and Engineering, 2007, 36(12), 2080(in Chinese).黄光杰, 钱宝华, 汪凌云, 等. 稀有金属材料与工程, 2007, 36(12), 2080.6 Chang C I, Lee C J, Huang J C. Scripta Materialia, 2004, 51, 509.7 Xu S W, Matsumoto N, Kamado S, et al. Scripta Materialia, 2009, 60, 249.8 Sanjari M, Farkoosh A R, Shalchi Amirkhiz B, et al. Scripta Materialia, 2017, 134, 1.9 Cai Z W, Chen F X, Guo J Q. The Chinese Journal of Nonferrous Metals, 2015, 25(9), 2335(in Chinese).蔡志伟, 陈拂晓, 郭俊卿. 中国有色金属学报, 2015, 25(9), 2335.10 Yu J, Zhang Z, Wang Q, et al. Journal of Alloys and Compounds, 2017, 704, 382.11 Xu Y, Hu L, Sun Y. Transactions of Nonferrous Metals Society of China, 2014, 24, 1683.12 Imandoust A, Barrett C D, Samman A L, et al. Metallurgical and Mate-rials Transactions A-Phusical Metallurgy and Materials Science, 2018, 49(5), 1809.13 Zhang D X, Tan Z, Huo Q H, et al. Materials Science and Engineering A, 2018, 715, 389.14 Peng J, Tong X S, Shang S L, et al. Rare Metal Materials and Enginee-ring, 2013, 42(8), 1627(in Chinese).彭建, 童小山, 尚守亮, 等. 稀有金属材料与工程, 2013, 42(8), 1627.15 Wu Y, Yan H, Zhu S, et al. Transactions of Nonferrous Metals Society of China, 2014, 24, 930.16 Tong X S, Peng J, Shi D W, et al. The Chinese Journal of Nonferrous Metals, 2013, 23(8), 2069(in Chinese).童小山, 彭建, 石大伟, 等. 中国有色金属学报, 2013, 23(8), 2069.17 Zhu L M, Li Q A, Chen X Y. Transactions of Materials and Heat Treatment, 2018, 39(2), 61(in Chinese).朱利敏, 李全安, 陈晓亚. 材料热处理学报, 2018, 39(2), 61.18 Xiao H C, Tang B, Liu C M, et al. Materials Science and Engineering A, 2015, 645, 241.19 Chen Z B, Liu C M, Xiao H C, et al. Materials Science and Engineering A, 2014, 618, 232.20 Poliak E I, Jonas J J. Acta Materialia, 1996, 44(1), 127.21 Sellars C M, Whiteman J A. Metal Science, 1979, 13(3-4), 187.
[1] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[2] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[3] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[4] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[5] 陈龙, 司家勇, 刘松浩, 廖凯. 挤压态FGH4096合金的热变形行为及热加工图[J]. 材料导报, 2019, 33(12): 2047-2054.
[6] 程晓农, 桂香, 罗锐, 杨雨童, 陈乐利, 王威, 王稳. 核电装备用奥氏体不锈钢的高温本构模型及动态再结晶[J]. 材料导报, 2019, 33(11): 1775-1781.
[7] 薛克敏, 薄冬青, 李萍. 轧制态7A60铝合金的热压缩显微组织及流变行为[J]. 《材料导报》期刊社, 2018, 32(8): 1306-1310.
[8] 张永集, 吴光亮, 武尚文. Nb-Ti微合金高强钢动态再结晶动力学及临界条件[J]. 材料导报, 2018, 32(22): 3900-3907.
[9] 孙倩,陈冷. Cu-3.0Ni-0.64Si合金的热变形行为[J]. 材料导报编辑部, 2017, 31(22): 90-94.
[10] 王伟, 马瑞, 赵军, 翟瑞雪. 铸锻联合成形工艺晶粒分布预测协同仿真技术*[J]. 《材料导报》期刊社, 2017, 31(2): 150-154.
[11] 罗锐, 程晓农, 郑琦, 朱晶晶, 王皎, 刘天, 陈光, 杨乔. 新型含铝奥氏体耐热合金Fe-20Cr-30Ni-0.6Nb-2Al-Mo的动态再结晶行为*[J]. 《材料导报》期刊社, 2017, 31(18): 136-140.
[12] 贺毅强, 钱晨晨, 李俊杰, 周海生. 喷射沉积铝基复合材料再结晶控制与强韧化机制的研究现状*[J]. 《材料导报》期刊社, 2017, 31(17): 90-97.
[13] 胡勇, 陈威, 李晓诚, 彭和思, 丁雨田. HMn62-3-3合金的热变形行为及热加工图*[J]. 《材料导报》期刊社, 2017, 31(16): 144-149.
[14] 戴青松, 欧世声, 邓运来, 付平, 张佳琪. 5083铝合金的热变形组织演变及晶粒度模型*[J]. 《材料导报》期刊社, 2017, 31(14): 143-146.
[15] 孙宇, 周琛, 万志鹏, 任丽丽, 胡连喜. 金属材料动态再结晶模型研究现状*[J]. 《材料导报》期刊社, 2017, 31(13): 12-16.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed