Please wait a minute...
材料导报  2021, Vol. 35 Issue (10): 10127-10133    https://doi.org/10.11896/cldb.20050234
  金属与金属基复合材料 |
激光直接沉积Fe55/NiCr-Cr3C2复合涂层的组织与性能
尹桂丽1,2, 陈岁元1, 梁京1, 刘常升1
1 东北大学材料与工程学院,材料各向异性与织构教育部重点实验室,辽宁省激光应用技术与装备重点实验室,沈阳 110819
2 辽宁工业大学材料科学与工程学院,锦州 121001
Microstructure and Properties of Fe55/NiCr-Cr3C2 Composite Coating Prepared by Laser Direct Deposition
YIN Guili1,2, CHEN Suiyuan1, LIANG Jing1, LIU Changsheng1
1 Key Laboratory for Anisotropy and Texture of Materials of Ministry of Education, Key Laboratory for Laser Application Technology and Equipment of Liaoning Province, School of Materials and Engineering,Northeastern University, Shenyang 110819, China
2 School of Material Science and Engineering, Liaoning University of Technology, Jinzhou 121001, China
下载:  全 文 ( PDF ) ( 6239KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以Fe55耐磨合金粉末为基础,通过添加不同含量的25%NiCr-75%Cr3C2粉末,制备了铁基复合合金粉末,并采用激光直接沉积的方法,在Q235钢基板上制备不同含量Cr3C2的铁基复合涂层。利用OM、SEM、XRD、显微硬度测试、摩擦磨损实验、高温氧化性实验及电化学工作站等分析手段,分析比较了各沉积涂层的组织与性能。结果表明,添加Cr3C2的复合涂层主要由α-Fe、γ-Fe、Cr7C3、(Cr,Fe)7C3、Cr23C6、CrFeB和Cr3C2等相组成。在添加30%(质量分数)Cr3C2的涂层中出现了以Cr3C2颗粒为中心向周边辐射的长杆状和多边形块状(Cr,Fe)7C3的典型放射状组织,并且放射状组织中三种碳化物的形成先后顺序是Cr3C2→(Cr,Fe)7C3→Cr23C6。Cr3C2的添加增加了共晶组织的数量,改变了共晶组织的形态。未添加Cr3C2的涂层中共晶组织约占40.2%(体积分数),而添加30%Cr3C2的涂层中共晶组织达到50.6%(体积分数);添加9%Cr3C2的涂层共晶组织明显细化,片层间距明显减小。与Fe55涂层相比,添加9%、15%和30%(质量分数)Cr3C2的三种涂层的硬度、耐磨性、高温抗氧化性及耐腐蚀性均显著提高,而添加15%Cr3C2的涂层的综合性能最佳。本研究提出的Cr3C2增强Fe55合金涂层的方法有望为研发激光增材制造高硬度、耐磨损和耐腐蚀等的摩擦零件工作层提供新途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹桂丽
陈岁元
梁京
刘常升
关键词:  增材制造  Fe55合金粉末  激光直接沉积  Cr3C2  高温抗氧化性    
Abstract: In this study, the Fe-based composite alloy powders were obtained by mechanically (ball-milling) mixing different amounts of 25%NiCr-75%Cr3C2 powders with Fe55 wear-resistant alloy powders. And then, using the prepared composite alloy powders, Fe-based composite coa-tings with different Cr3C2 contents were subsequently fabricated on Q235 steel substrates via laser direct deposition. The microstructure and properties of the deposited coatings were analyzed using many experimental means such as OM, SEM, XRD, microhardness test, friction and wear test, high temperature oxidation test and electrochemical workstation, and so on. The results showed that, the composite coatings containing Cr3C2 are mainly composed of α-Fe, γ-Fe, Cr7C3, (Cr,Fe)7C3, Cr23C6, CrFeB and Cr3C2, etc. The coating with 30% Cr3C2 exhibits ty-pical radial structures which constitute of long rod-shaped and polygon block (Cr,Fe)7C3 radiating from the center of Cr3C2 particles to the perip-hery, and the chronological formation sequence of the three carbides in the radial structure is Cr3C2→(Cr, Fe)7C3→Cr23C6. Moreover, the addition of Cr3C2 can result in the increase of the amount of eutectic structure and the change in morphology, as the coatings with no/with 30% Cr3C2 contains about 40.2%/50.6% eutectic structure, and the eutectic structure of the coating with 9% Cr3C2 is obviously refined, with a remarkably smaller lamellar spacing. Compared with Fe55 coating, all the composite coatings (with 9%, 15% and 30% Cr3C2) got significantly improved in comprehensive mechanical properties such as hardness, wear resistance, high temperature oxidation resistance and corrosion resistance, and the coating with 15% Cr3C2 has the best integrative performance. The strengthening method for directly deposited Fe55 alloy coatings by adding Cr3C2 proposed in this work is expected to provide new insights for the development of laser-additive manufacturing high-hardness, wear resistant and corrosion resistant working layer of friction parts.
Key words:  additive manufacturing    Fe55 alloy powder    laser direct deposition    Cr3C2    high temperature oxidation resistance
               出版日期:  2021-05-25      发布日期:  2021-06-04
ZTFLH:  TG174.44  
基金资助: 国家重点研发计划项目课题(2016YFB1100201);工信部绿色系统集成项目(2017-53);沈阳市新兴产业研发计划项目(18-004-2-26)
通讯作者:  chensy@smm.neu.edu.cn   
作者简介:  尹桂丽,辽宁工业大学副教授,东北大学博士研究生,主要从事激光增材制造、材料表面改性、焊接等方面的研究。
陈岁元,东北大学教授,博士研究生导师,材料科学与工程学院材料系副主任。兼任东北大学鞍山激光应用技术研究院常务副院长、辽宁省高等学校激光应用技术研究院常务副院长。主要研究方向为激光增材制造技术。在国内外期刊上发表学术论文150余篇,其中被SCI收录30余篇、EI收录60篇。主编出版《材料的激光制备与处理技术》专著1部,获得国家授权发明专利16项。主持国家、省部级、市和企业项目等20余项;参与国家基金和国防项目等7项。获得国家冶金科技进步二等奖、辽宁省自然科学三等奖、辽宁省自然科学学术二等奖。
引用本文:    
尹桂丽, 陈岁元, 梁京, 刘常升. 激光直接沉积Fe55/NiCr-Cr3C2复合涂层的组织与性能[J]. 材料导报, 2021, 35(10): 10127-10133.
YIN Guili, CHEN Suiyuan, LIANG Jing, LIU Changsheng. Microstructure and Properties of Fe55/NiCr-Cr3C2 Composite Coating Prepared by Laser Direct Deposition. Materials Reports, 2021, 35(10): 10127-10133.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050234  或          http://www.mater-rep.com/CN/Y2021/V35/I10/10127
1 Li Z Q, Han J M, Yang Z Y, et al. Engineering Failure Analysis, 2015, 57,202.
2 Li Z Q, Han J M, Li W J, et al.Materials and Design, 2014, 56(4),146.
3 Heerok Hong, Minsoo Kim, Hoyong Lee, et al. Journal of Mechanical Science and Technology, 2019, 33 (4),1711.
4 Xia Q, Chen S Y, Shi C F, et al. Powder Metallurgy, 2018, 61(5),395.
5 Wei M W,Chen S Y, Xi L Y, et al. Optics and Laser Technology, 2018, 107,99.
6 Shi C F, Chen S Y, Xia Q, et al.Powder Metallurgy, 2018, 61(1),73.
7 Xi L Y, Chen S Y, Wei M W, et al.Journal of Materials Engineering and Performance, 2019, 28(9),5521.
8 Zuo P F, Cen S Y, Wei M W, et al.Journal of Manufacturing Processes, 2019, 44,28.
9 Zhao X, Dong S Y, Yan S X, et al.Materials Science & Engineering A, 2020, 771,138557.
10 Cao L, Chen S Y, Wei M W, et al.Optics and Laser Technology, 2019, 111,541.
11 Kang X L, Dong S Y, Wang H B, et al.Materials and Design, 2020, 188,108434.
12 Chen X T, Chen S Y, Liang J, et al.Powder Metallurgy, 2019, 62(4),218.
13 Chen X T, Chen S Y, Cui T, et al.Optics and Laser Technology, 2020, 126,106080.
14 Yuan Y L, Li Z G. Surface and Coatings Technology, 2013, 228,41.
15 Gao H H, Ding T T, Ma S J, et al.Chinese Journal of Rare Metals, 2016, 40(11),1119 (in Chinese).
高胡鹤,丁婷婷, 马淑谨, 等.稀有金属, 2016, 40(11), 1119.
16 Verdi D, Garrido M A, Múnez C J, et al.Materials and Design, 2015, 67,20.
17 Han B, Li M Y, Wang Y.Journal of Materials Engineering and Perfor-mance, 2013, 22(12),3749.
18 Lou D Y, Liu D, He C L, et al.Journal of Materials Engineering and Performance, 2016, 25(1),312.
19 Yin G L, Chen S Y, Liu Y Y, et al.Journal of Materials Engineering and Performance, 2018, 27(3),1154.
20 Liu Y Y, Chen S Y,Guo R, et al.Applied Laser, 2017, 37(4),492 (in Chinese).
刘媛媛, 陈岁元, 国瑞, 等.应用激光, 2017, 37(4),492.
21 Xu Z P. Effect of Ti and Cr3C2 on microstructure and properties of the Fe-based alloy coatings produced by plasma transferred arc weld-surfacing process. Master's Thesis, Anhui University of Technology, China, 2013 (in Chinese).
徐志鹏. Ti及Cr3C2对等离子铁基合金堆焊层组织和性能的影响. 硕士学位论文, 安徽工业大学, 2013.
22 Ping X L, Sun S T, Wang F, et al.Surface Review and Letters, 2019, 26(6),1850207.
23 Yuan Y L, Li Z G.Journal of Materials Engineering and Performance, 2013, 22(11),3439.
24 Xiao Y, Xu C Y, Ryou Min, et al.Materials Reports B: Research Papers, 2018, 32(12),4329 (in Chinese).
肖轶, 徐呈艺, Ryou Min, 等.材料导报:研究编, 2018, 32(12),4329.
25 Yin G L, Chen S Y, Liang J, et al.Metallurgical and Materials Transactions A, 2019, 50(6),2599.
26 Li Z. Research on microstructure and properties of Fe based wear resistant coatings by laser deposition.Master's Thesis, Changchun University of Science and Technology, China, 2016 (in Chinese).
李镇. 激光沉积铁基耐磨涂层组织与性能研究. 硕士学位论文, 长春理工大学, 2016.
27 Sun S. Preparation, mechanical properties and oxidation resistance of Cr7C3 block. Master's Thesis, Xi'an Jiaotong University, China, 2013 (in Chinese).
孙圣. 块体Cr7C3的制备及其力学性能与抗氧化性能测试. 硕士学位论文, 西安交通大学, 2013.
28 Pardo A, Otero E, Merino M C, et al.Corrosion Science, 2002, 44,1193.
29 Zhou Z J,Xu L,Du Y B, et al.Journal of Chongqing Technology and Bu-siness University(Natural Science Edition),2021,38(2),69(in Chinese).
周志杰,许磊,杜彦斌 等.重庆工商大学学报(自然科学版),2021,38(2),69.
30 Wang F F, Zhang F X, Zheng L J, et al.Applied Surface Science, 2017, 423,695.
[1] 杨鑫, 马文君, 王岩, 刘世锋, 张兆洋, 王婉琳, 王犇, 汤慧萍. 增材制造金属点阵多孔材料研究进展[J]. 材料导报, 2021, 35(7): 7114-7120.
[2] 杨杰, 黎静, 吴文杰, 于宁. 空间大型桁架在轨增材制造技术的研究现状与展望[J]. 材料导报, 2021, 35(3): 3159-3167.
[3] 金鑫源, 兰亮, 何博, 朱奥迪, 高双. 选区激光熔化成形金属零件表面粗糙度研究进展[J]. 材料导报, 2021, 35(3): 3168-3175.
[4] 常坤, 梁恩泉, 张韧, 郑敏, 魏雷, 黄文静, 林鑫. 金属材料增材制造及其在民用航空领域的应用研究现状[J]. 材料导报, 2021, 35(3): 3176-3182.
[5] 王凯博, 刘玉欣, 吕耀辉, 徐滨士. 工艺参数对脉冲等离子弧增材制造IN738LC合金组织与性能的影响[J]. 材料导报, 2021, 35(2): 2086-2091.
[6] 伍芷凝, 姚青, 刘国盛, 涂广俊, 周振宇, 丁明伟, 徐辉. 电弧微爆制备球形铜粉技术的工艺特性[J]. 材料导报, 2020, 34(Z2): 386-389.
[7] 李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(Z1): 280-282.
[8] 李卿, 赵国瑞, 马文有, 余红雅, 刘敏. 选区激光熔化成形多孔Ti6Al4V (ELI)合金的拉伸性能及断裂机制[J]. 材料导报, 2020, 34(4): 4073-4076.
[9] 丁华平,龚攀,姚可夫,邓磊,金俊松,王新云. 非晶合金零件成形技术研究进展[J]. 材料导报, 2020, 34(3): 3133-3141.
[10] 张金田, 王杏华, 王涛, 马晓蕾, 杨海欧. 电弧增材制造单道单层工艺特性研究[J]. 材料导报, 2020, 34(24): 24132-24137.
[11] 孙雅杰, 常云龙. 磁控电弧焊接过程及新技术研究进展[J]. 材料导报, 2020, 34(21): 21155-21165.
[12] 马旻昱, 连勇, 张津. 增材制造技术制备高熵合金的研究现状及展望[J]. 材料导报, 2020, 34(17): 17082-17088.
[13] 汤鹏君, 李旭强, 翟海民, 李文生. 不同基体超音速火焰喷涂Cr3C2-20NiCr涂层的性能[J]. 材料导报, 2020, 34(12): 12115-12121.
[14] 刘广, 周溯源, 杨海威, 陈鹏, 欧阳潇, 严明. 3D打印CoCrFeMnNi高熵合金的微观组织、室温及低温力学性能[J]. 材料导报, 2020, 34(11): 11076-11080.
[15] 邹田春, 欧尧, 祝贺, 秦嘉徐. 激光选区熔化AlSi7Mg合金的微观组织和力学性能[J]. 材料导报, 2020, 34(10): 10098-10102.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed