Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 70-76    https://doi.org/10.11896/j.issn.1005-023X.2017.010.015
  材料研究 |
GH3625合金管材冷变形行为及热处理工艺研究*
丁雨田,高钰璧,豆正义,高鑫,贾智
兰州理工大学,省部共建有色金属先进加工与再利用国家重点实验室, 兰州 730050
Study on Cold Deformation Behavior and Heat Treatment Process of GH3625 Superalloy Tubes
DING Yutian, GAO Yubi, DOU Zhengyi, GAO Xin, JIA Zhi
State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 1355KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过室温压缩试验、数学模型拟合、光学显微镜和洛氏硬度计等手段,并建立GH3625合金管材冷变形本构方程,研究了冷变形及热处理对GH3625合金管材组织和性能的影响。研究表明,GH3625合金管材加工硬化规律基本符合Hollomon方程,其中冷变形量是影响加工硬化的主要因素;随着冷变形量的增大,晶粒的变形程度增大,晶粒的变形均匀性逐渐改善,平均晶粒尺寸减小;合金的平均晶粒尺寸随热处理温度的升高呈现出先减小后增大的趋势,在1 100~1 250 ℃范围内晶粒长大激活能为180.46 kJ/mol;硬度随热处理温度的升高而降低,且在晶粒长大过程中合金的硬度值与平均晶粒尺寸满足Hall-Patch关系式。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁雨田
高钰璧
豆正义
高鑫
贾智
关键词:  GH3625合金管材  冷变形行为  加工硬化  热处理工艺  平均晶粒尺寸    
Abstract: The influence of cold deformation and heat treatment on microstructure and properties of the GH3625 alloy was studied through room-temperature compression test, mathematical model fitting, optical microscopy and Rockwell hardness and other means. Cold deformation constitutive equation of GH3625 alloy tubes was established. The results show that GH3625 alloy harde-ning law basically follows Hollomon equation, and the cold deformation was the main factor which affect the work hardening. With the increase of cold deformation extend, grain deformation degree raised, deformation uniformity of the grains gradually improved and average grain size decreased. With the increase of heat treatment temperature, the average grain size of the alloy first decreased and then climbed up. When the temperature was at the range of 1 100-1 250 ℃, grain growth activation energy reached 180.46 kJ/mol. Hardness declined with the increase of heat treatment temperature, the hardness values and the average grain size of the alloy kept in line with Hall-Patch relation.
Key words:  GH3625 superalloy tubes    cold deformation behavior    work hardening    heat treatment process    average grain size
                    发布日期:  2018-05-08
ZTFLH:  TG146.1+5  
基金资助: *国家自然科学基金(51661019);甘肃省重大科技专项(145RTSA004)
作者简介:  丁雨田:男,1962年生,博士,教授,博士研究生导师,研究方向为镍基高温合金E-mail:Dingyutian@126.com高钰璧:男,1991年生,硕士研究生,研究方向为GH3625合金冷变形行为E-mail:gaoyubi1991@126.com
引用本文:    
丁雨田,高钰璧,豆正义,高鑫,贾智. GH3625合金管材冷变形行为及热处理工艺研究*[J]. 材料导报编辑部, 2017, 31(10): 70-76.
DING Yutian, GAO Yubi, DOU Zhengyi, GAO Xin, JIA Zhi. Study on Cold Deformation Behavior and Heat Treatment Process of GH3625 Superalloy Tubes. Materials Reports, 2017, 31(10): 70-76.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.015  或          http://www.mater-rep.com/CN/Y2017/V31/I10/70
1 Zhang Hongbin.Inconel GH3625 alloy progress abroad [J]. Special Steel Technol,2000(3):69(in Chinese).
张红斌. 国外Inconel GH3625合金的进展[J].特钢技术,2000(3):69.
2 郭建亭.高温合金材料学[M].北京:科学出版社,2008.
3 中国航空材料手册编委会.航空材料手册[M].北京:中国标准出版社,2002.
4 Mittra J,Dubey J S,Banerjee S. Acoustic emission technique used for detecting early stages of precipitation during aging of Inconel GH3625[J]. Scr Mater,2003,49:1209.
5 冶军.美国镍基高温合金[M].北京:科学出版社,1978:228.
6 Tian Dang. Development and production of high-temperature alloy seamless tubulars[J]. Steel Pipe,2002,31(3):1(in Chinese).
田党. 高温合金无缝管材的研制与生产[J].钢管,2002,31(3):1.
7 He Songjiong. Study on processing of difficult-to-deform high temperature alloy of nickel base[J].Shanghai Steel Institute,1996(3):28(in Chinese).
何松炯.一种难变形镍基高温合金加工工艺的研究[J].上海钢研,1996(3):28.
8 Zhao Honglei, Liu Ming, Zhang Luqiang, et al. Study on forming process of GH3600 alloy tube for aerospace[J].Hot Work Technol,2014,43(11):140(in Chinese).
赵鸿磊,刘鸣, 张录强,等.航天用GH3600合金管成形工艺研究[J].热加工工艺,2014,43(11):140.
9 Guo Shengli,Li Defu,Guo Qingmiao,et al. Investigation on hot workability characteristics of Inconel GH3625 superalloy using processing maps[J]. J Mater Sci,2012,47:5867.
10 Li Defu, Wu Zhigang, Guo Shengli, et al.Study on the processing map of GHGH3625 Ni-based alloy deformed at high temperature[J]. Rare Met Mater Eng,2012(41):1026(in Chinese).
李德富, 吾志刚, 郭胜利, 等. GHGH3625镍基合金高温塑性变形加工图研究[J].稀有金属材料与工程,2012(41):1026.
11 Guo Qingmiao, Li Haitao, Li Defu, et al. Hot extrusion moulding process and microstructure evolution of GHGH3625 superalloy tubes[J]. Chin J Rare Met,2011,35(5):685(in Chinese).
郭青苗, 李海涛, 李德富, 等.GHGH3625合金管材热挤压成形工艺及组织演变的研究[J].稀有金属,2011,35(5):685.
12 Yan Shicai, Cheng Ming, Zhang Shihong, et al. High-temperature high-speed hot deformation behavior of Inconel alloy GH3625 [J].Chin J Mater Res,2010,24(3):239(in Chinese).
闫士彩, 程明, 张士宏, 等. Inconel GH3625合金的高温高速热变形行为[J]. 材料研究学报,2010,24(3):239.
13 卡恩R W, 哈森P, 克雷默E J. 材料科学与技术(第6卷)[M].北京: 科学出版社,1999:17.
14 Huang Kewen, Kong Fanya. Microstructure and mechanical property of cold drawn high strength 00Cr18Ni10N stainless steel wire[J].Acta Metall Sin,2009,45(3):275(in Chinese).
黄克文, 孔凡亚. 冷拔高强00Cr18Ni10N不锈钢丝显微组织与力学性能[J].金属学报,2009,45(3):275.
15 Huang C X, Yang G, Gao Y L, et al. Influence of processing temperature on the microstructures and tensile properties of 304L stainless steel by ECAP[J]. Mater Sci Eng A,2008,485:643.
16 俞汉清, 陈金德. 材料成形原理[M].北京: 机械工业出版社,1996,10.
17 Bian Fang, Su Guoyue, Kong Yafan, et al. Work hardening beha-vior of Inconel 718 [J]. Nonferrous Met,2005,57(1):1(in Chinese).
边舫,苏国跃,孔亚凡,等. Inconel 718合金加工硬化行为[J].有色金属,2005,57(1):1.
18 张俊善. 材料强度学[M]. 哈尔滨: 哈尔滨工业大学出版社,2004,55.
19 Hollomon J H. The effect of heat treatment and carbon content on the work hardening characteristics of several steels[J]. Trans ASM,1944,32:123.
20 Tian X, Zhang Y S. Mathematical description for flow curves of some stable austenitic steels[J].Mater Sci Eng,1994,174A:1.
21 Gao Yongsheng, Zhou Jihua, Lun Yixin, et al. Study on the mathe-matial model of flow stress of nonferrous under cold forming[J].J University of Scinence and Technology Beijing,1994,16(S):102(in Chinese).
高永生, 周纪华, 伦怡馨, 等.有色金属冷变形流动应力的数学模型[J].北京科技大学学报,1994,16(S):102.
22 Wang Zhigang, Yang Yujun, Tian Shuixian, et al. Influence of cold drawing process on microstructures and tensile properties of alloy GH3GH3625[J].J Iron Steel Res,2011(S2):92(in Chinese).
王志刚, 杨玉军, 田水仙, 等.冷拔变形对GH3GH3625合金组织和性能的影响[J].钢铁研究学报,2011(S2):92.
23 Zhao Yuxin. Cold deformation behavior of GHGH3625 alloy and their effects on the mechanical properties [J]. J Mater Eng,2000(9):36(in Chinese).
赵宇新. GHGH3625合金的冷变形及其力学性能的影响[J].材料工程,2000(9):36.
24 Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling[J]. Metal Sci,1979,13:187.
25 Anelli E. Application of mathematical modelling to hot rolling and controlled cooling of wire rods and bars[J].ISIJ Int,1992,32:440.
[1] 孙国元, 张敏. 块体金属玻璃的加工硬化行为[J]. 材料导报, 2019, 33(3): 462-469.
[2] 田亚强, 黎旺, 郑小平, 宋进英, 魏英立, 陈连生. 两相区退火热轧中锰钢碳化物析出行为与组织性能研究[J]. 材料导报, 2019, 33(16): 2765-2770.
[3] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[4] 王永强, 朱国辉, 陈其伟, 丁汉林, 万德成. 高强度超细晶金属材料塑性行为及增塑研究进展[J]. 材料导报, 2018, 32(19): 3414-3422.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed