Please wait a minute...
材料导报  2021, Vol. 35 Issue (22): 22151-22159    https://doi.org/10.11896/cldb.20090030
  高分子与聚合物基复合材料 |
生物可降解PBS聚酯合金的制备与性能调控
姜英勇1,2, 任亮1,2, 任重3, 李文博1,2, 帅嘉欣1,2, 张明耀1,2, 张会轩1,2
1 长春工业大学高分子材料合成与应用技术国家地方联合工程实验室,长春 130012
2 长春工业大学化学工程学院,长春 130012
3 长春中医药大学附属医院,长春 130021
Preparation and Performance Control of Biodegradable PBS Polyester Alloy
JIANG Yingyong1,2, REN Liang1,2, REN Zhong3, LI Wenbo1,2, SHUAI Jiaxin1,2, ZHANG Mingyao1,2, ZHANG Huixuan1,2
1 National Engineering Laboratory for Polymer Materials Synthesis and Application Technology, Changchun University of Technology, Changchun 130012, China
2 School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
3 The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China
下载:  全 文 ( PDF ) ( 3238KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚丁二酸丁二醇酯(PBS)因具有完全的生物可降解性、无毒无害等优点成为了近年来研究的热点。但是由于PBS的结晶速率低、韧性较差等不足限制了其进一步深入与广泛的应用。本工作在不牺牲PBS生物可降解性的前提下,针对其韧性不足等缺点采用化学接枝与物理共混相结合的方法对PBS进行了增韧改性。采用聚己二酸-对苯二甲酸丁二酯(PBAT)与经甲基丙烯酸缩水甘油酯(GMA)接枝改性后的PBS进行熔融共混制备了一系列具有高韧性的PBS聚酯合金,研究了PBS聚酯合金中PBAT含量对其微观结构、力学性能、热性能、结晶性能以及加工性能的影响。结果表明:随着PBAT含量的增加,聚酯合金受到外力作用时的剪切形变行为愈发明显,材料的断裂行为由脆性断裂转为韧性断裂;聚酯合金中PBAT含量为30%(质量分数,下同)时,综合性能最好。随着PBAT含量的增加,聚酯合金的结晶焓、熔融焓下降,结晶度逐渐降低,在合金中PBAT含量为50%时,聚酯合金的结晶度为29.51%,相比纯PBS下降了39%,同时PBAT的加入也使得合金的玻璃化转变温度下降。对材料的流变行为分析表明,在加入PBAT后聚酯合金的熔体强度得到了较大的提升,加工成型性能也得到了明显的改善。PBAT使PBS聚酯合金韧性得到了较大的提升,随着合金中PBAT含量的增加,材料的缺口冲击强度逐渐上升,拉伸强度逐渐下降,断裂伸长率先升高后降低。在PBAT含量为30%时,材料的断裂伸长率为687%,相比纯PBS提升了136%;缺口冲击强度在PBAT含量为50%时达到397 J/m,相比纯PBS增加了892.5%。同时将其与未进行接枝改性的PBS/PBAT合金的各项性能进行了对比,发现经过接枝改性后的PBS-g-GMA与PBAT的相容性得到了提升。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜英勇
任亮
任重
李文博
帅嘉欣
张明耀
张会轩
关键词:  聚丁二酸丁二醇酯  聚己二酸-对苯二甲酸丁二酯  聚酯合金  生物可降解  增韧改性  加工性能    
Abstract: Poly(butylene succinate) (PBS) has become a research hotspot in recent years due to its complete biodegradability, non-toxic and harmless advantages. However, its further application is limited due to the low crystallization rate and poor toughness. In this research, PBS was modified by chemical grafting and physical blending to improve its toughness without sacrificing the biodegradability. PBS polyester alloys with higher toughness were prepared by melt blending of poly(butylene adipate-co-terephthalate) (PBAT) and modified PBS with glycidyl methacrylate (GMA). The effects of PBAT content on mechanical properties, thermal properties, crystallization properties, microstructure and processability of PBS polyester alloys were studied in this research. The results showed that with the increase of PBAT content, the shear deformation behavior of polyester alloy under external force was more obvious, and the fracture behavior of the material changed from brittle fracture to ductile fracture. And the comprehensive performance of PBS polyester alloy was the best when the content of PBAT in alloy was 30% (mass fraction). With the increase of PBAT content in the polyester alloy, the crystallization enthalpy, melting enthalpy and crystallinity of alloy decreased, and when the content of PBAT in the alloy reached to 50%, the crystallinity of polyester alloy was the value of 29.51%, which was 39% lower than pure PBS, meanwhile the glass transition temperature of the alloy also decreased. The melt strength of the alloy was greatly improved by the introduction of PBAT; in other words, the processing performance of the alloy was enhanced obviously. It was evidently found that the addition of PBAT led to the better toughness of PBS polyester alloy. With the increase of PBAT content in the alloy, the notched impact strength increased gradually, the tensile strength decreased rapidly, and the elongation at break of alloy increased first and then decreased. The elongation at break was 687% when the content of PBAT was 30%, which was 136% higher than pure PBS; and the notched impact strength of the alloy was 397 J/m when content of PBAT was 50%, which was 892.5% higher than pure PBS. The grafted PBS-g-GMA and PBAT alloys were also compared with the non-grafted PBS/PBAT alloys, which showed that the compatibility between PBS-g-GMA and PBAT was improved after grafting.
Key words:  poly(butylene succinate)    poly(butylene adipate-co-terephthalate)    polyester alloy    biodegradable    toughening modification    processability
出版日期:  2021-11-25      发布日期:  2021-12-13
ZTFLH:  TQ323  
通讯作者:  renl@ccut.edu.cn; zmy@ccut.edu.cn   
作者简介:  姜英勇,2020年6月毕业于长春工业大学,获理学硕士学位。现为长春工业大学材料科学与工程学院博士研究生。主要研究方向为生物基高分子材料。
任亮,长春工业大学副教授,博士研究生导师,北京大学访问学者。2011年6月毕业于吉林大学高分子化学与物理专业,获理学博士学位。研究兴趣:(1)高分子材料强韧化;(2)有机无机纳米杂化材料的制备与性能;(3)聚合物基复合材料结构设计与制备;(4)生物基高分子材料。在国内外重要期刊发表文章20余篇,申报发明专利20余项。
张明耀,长春工业大学教授,博士研究生导师,吉林省高级专家,吉林省“长白山学者”特聘教授。2003年9月毕业于东北大学材料学专业,获工学博士学位。主要研究方向为:(1)微纳尺寸粒子制备化学;(2)通用高分子材料高性能化;(3)多相多组分高分子材料结构设计与制备。在国内外期刊发表研究论文70余篇,获授权国家发明专利10余项目。
引用本文:    
姜英勇, 任亮, 任重, 李文博, 帅嘉欣, 张明耀, 张会轩. 生物可降解PBS聚酯合金的制备与性能调控[J]. 材料导报, 2021, 35(22): 22151-22159.
JIANG Yingyong, REN Liang, REN Zhong, LI Wenbo, SHUAI Jiaxin, ZHANG Mingyao, ZHANG Huixuan. Preparation and Performance Control of Biodegradable PBS Polyester Alloy. Materials Reports, 2021, 35(22): 22151-22159.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090030  或          http://www.mater-rep.com/CN/Y2021/V35/I22/22151
1 Zheng Liuchun, Li Chuncheng, Wu Shaohua, et al. Polymer Bulletin, 2016(9), 115(in Chinese).
郑柳春, 李春成, 吴绍华,等. 高分子通报, 2016(9), 115.
2 Hopewell J, Dvorak R, Kosior E. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364(1526), 2115.
3 Gigli M, Negroni A, Zanaroli G, et al. Reactive and Functional Polymers, 2013, 73(5), 764.
4 Schneiderman D K, Hillmyer M A. Macromolecules,2017,50(10),3733.
5 Chen Xuesi, Chen Guoqiang, Tao Youhua, et al. Acta Polymerica Sinica, 2019, 50(10), 1068(in Chinese).
陈学思, 陈国强, 陶友华, 等. 高分子学报, 2019, 50(10), 1068.
6 Hu C, Bourbigot S, Delaunay T, et al. Polymer Degradation and Stability, 2019, 164, 9.
7 Wei Mengmeng, Su Yanmin, Hu Xiaodong, et al. Rubber & Plastics Resources Utilization. 2018, 309(4),4(in Chinese).
魏萌萌, 苏艳敏, 虎晓东,等. 橡塑资源利用, 2018, 309(4), 4.
8 Song R, Murphy M, Li C, et al. Drug Design, Development and Therapy, 2018,12, 3117.
9 Rahul Patwa,Amit Kumar,Vimal Katiyar, et al. Journal of Applied Polymer Science, 2018, 135(33),46590.
10 Zhang X, Wang X. Carbohydrate Polymers, 2018, 196,254.
11 Wang Jun, Liu Suxia, Ouyang Pingkai. New Chemical Materials, 2007(10), 28(in Chinese).
王军, 刘素侠, 欧阳平凯. 化工新型材料, 2007(10), 28.
12 Luo Faliang, Li Rongbo, Luo Chuntao, et al. Polymer Bulletin, 2012(8), 6(in Chinese).
罗发亮, 李荣波, 罗春桃, 等. 高分子通报, 2012(8), 6.
13 Yeon H S, Sang Y E, Soon I S . Polymer Journal,2012,44(12),1179.
14 Feng Ruihua. Materials Reports, 2014, 28(9), 119(in Chinese).
冯瑞华. 材料导报, 2014, 28(9), 119.
15 Xu J, Guo B H. Biotechnology Journal, 2010, 5(11),1149.
16 Zhou Weidong, Zhang Wei, Wang Xiaowei, et al. New Chemical Mate-rials, 2012, 40(7), 145(in Chinese).
周卫东,张维,王小威, 等. 化工新型材料, 2012, 40(7), 145.
17 Shi X Q, Aimi K, Ito H, et al. Polymer, 2005, 46(3), 751.
18 Ohkoshi I, Abe H, Doi Y. Polymer, 2000, 41(15), 5985.
19 Shu Mengying, Weng Yunxuan, Zhang Caili. China Plastics, 2020, 34(3), 33(in Chinese).
舒梦莹, 翁云宣, 张彩丽. 中国塑料, 2020, 34(3), 33.
20 Wang Xin, Shi Min, Yu Xiaolei, et al. Materials Reports A: Review Papers, 2019, 33(11), 1897(in Chinese).
王鑫, 石敏, 余晓磊,等. 材料导报:综述篇, 2019, 33(11), 1897.
21 Ki H C, Park O O. Polymer, 2001, 42(5), 1849.
22 Yutaka Tokiwa, Tomoo Suzuki. Journal of Applied Polymer Science, 1981, 26(2), 441.
23 Rolf-Joachim Müller, Ilona Kleeberg, Wolf-Dieter Deckwer. Journal of Biotechnology, 2001, 86(2), 87.
24 Matthew Zaverl, Oscar Valerio, Manjusri Misra, et al. Journal of Applied Polymer Science, 2014, 132(2), 41278.
25 Lv Huaixing, Yang Biao, Xu Guozhi. China Plastics, 2009, 23(8), 18(in Chinese).
吕怀兴, 杨彪, 许国志. 中国塑料, 2009, 23(8), 18.
26 Jiu Yongbin, Yao Weishang, Wang Xiaoqing, et al. New Chemical Materials, 2006(4), 37(in Chinese).
酒永斌, 姚维尚, 王晓青,等. 化工新型材料, 2006(4), 37.
27 Chuai C Z, Zhao N, Li S, et al. Advanced Materials Research, 2011, 197, 1149.
28 Zhao Shengyun, Gong Xinhuai, Wang Zhaoli, et al. Polymer Bulletin, 2018(11), 60(in Chinese).
赵升云, 龚新怀, 王兆礼,等. 高分子通报, 2018(11), 60.
29 Li Dongfeng, Li Bingqi. Organic chemistry. Huazhong University of Science and Technology Press, China, 2007(in Chinese).
李东风, 李炳奇. 有机化学, 华中科技大学出版社,2007.
30 Vp S, Mohanty S, Nayak S K. Polymers for Advanced Technologies, 2016, 27(4), 515.
31 Gong Xinhuai, Xin Meihua, Li Mingchun, et al. Transactions of the Chinese Society of Agricultural Engineering,2017,33(2),308(in Chinese).
龚新怀, 辛梅华, 李明春, 等. 农业工程学报, 2017, 33(2), 308.
32 Mao Zeyu, Liu Yan, Han Ruifeng, et al. China Elastomerics, 2020, 30(4), 17(in Chinese).
毛泽誉, 刘岩, 韩瑞锋,等. 弹性体, 2020, 30(4), 17.
33 John J, Mani R, Bhattacharya M. Journal of Polymer Science Part A: Polymer Chemistry, 2002, 40(12), 2003.
34 Wang H, Schultz J M, Yan S. Polymer, 2007, 48(12), 3530.
35 Cao Guoguo, Li Donghui, Ouyang Wenyi, et al. Chinese Journal of Colloid & Polymer, 2017(3), 38(in Chinese).
曹果果, 李栋辉, 欧阳文宜, 等. 胶体与聚合物, 2017(3), 38.
36 Lu Yuyuan, An Lijia, Wang Jian. Acta Polymerica Sinica, 2016(6), 688(in Chinese).
卢宇源, 安立佳, 王健. 高分子学报, 2016(6), 688.
37 Hong Zhiliang, Cheng Laifei, Lu Linjing, et al. Materials Reports, 2010, 24(23), 1(in Chinese).
洪智亮, 成来飞, 鲁琳静, 等. 材料导报,2010, 24(23),1.
38 Gu Ting, Zhu Dayong, Liu Dianxin, et al. China Plastics Industry, 2017, 45(2), 97(in Chinese).
辜婷, 朱大勇, 刘典新,等. 塑料工业, 2017, 45(2), 97.
[1] 李强, 赵特, 魏磊山, 陈明华, 孙旭东. Cu含量对生物可降解Zn-Cu合金组织和性能的影响[J]. 材料导报, 2021, 35(8): 8088-8092.
[2] 陈阳, 刘志勇, 管焓宇, 钱百惠. 水性聚氨酯增韧环氧树脂研究及应用进展[J]. 材料导报, 2021, 35(13): 13205-13214.
[3] 赵杰, 钱俊雯, 赵军平. 基于Scopus的生物可降解金属材料文献调研与分析[J]. 材料导报, 2020, 34(Z1): 469-475.
[4] 王异彩, 张甜, 李媛. 光聚合PEXS-A水凝胶材料的合成及包埋活细胞的性能[J]. 材料导报, 2020, 34(2): 2169-2173.
[5] 王雪, 朱昆萌, 彭长鑫, 钟铠, 崔升. 生物可降解多糖气凝胶材料的研究进展[J]. 材料导报, 2019, 33(z1): 476-480.
[6] 常悦, 陈支泽, 杨一奇. 聚乳酸-聚己内酯多嵌段立构复合物薄膜的制备及熔融稳定性[J]. 材料导报, 2019, 33(16): 2808-2812.
[7] 代晓军, 杨西荣, 王昌, 徐鹏, 赵曦, 于振涛. 生物医用可降解锌基合金的研究进展[J]. 材料导报, 2018, 32(21): 3754-3759.
[8] 李绍龙, 徐艺, 陈农田, 杨文锋. 利用Avrami和莫志深方法研究聚丁二酸丁二醇酯-聚丁二酸二甘醇酯多嵌段共聚物的非等温结晶动力学[J]. 材料导报, 2018, 32(16): 2882-2888.
[9] 王文锦, 王克强, 叶深杰, 苗伟俊, 陈忠仁. 非对称嵌段共聚物PI-b-PB对IR/BR并用胶相形态与性能的影响*[J]. 《材料导报》期刊社, 2017, 31(2): 96-100.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed