Please wait a minute...
材料导报  2021, Vol. 35 Issue (8): 8088-8092    https://doi.org/10.11896/cldb.20010012
  金属与金属基复合材料 |
Cu含量对生物可降解Zn-Cu合金组织和性能的影响
李强1, 赵特1, 魏磊山1, 陈明华1, 孙旭东2
1 辽宁工业大学材料科学与工程学院, 锦州 121001
2 东北大学材料科学与工程学院, 沈阳 110004
Effect of Cu Contents on Microstructure and Properties of Biodegradable Zn-Cu Alloys
LI Qiang1, ZHAO Te1, WEI Leishan1, CHEN Minghua1, SUN Xudong2
1 College of Materials Science & Engineering, Liaoning University of Technology, Jinzhou 121001, China
2 School of Materials Science & Engineering, Northeastern University, Shenyang 110004, China
下载:  全 文 ( PDF ) ( 10234KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以Zn粉和Cu粉为原料,采用粉末冶金技术制备生物可降解Zn-Cu合金。研究了Cu含量对生物可降解Zn-Cu合金显微组织、物相组成、抗压强度、耐腐蚀性以及抗菌性能的影响。研究结果表明:当Cu元素加入Zn基体后,Zn-Cu合金的烧结致密度增大。当Cu含量为0.5%—2.5%(质量分数,下同)时,Zn-xCu合金由单相η固溶体组成;当Cu含量为3.0%时,Zn-3.0Cu合金由η和ε两相组成。随着Cu含量的增加,Zn-xCu合金(x=0%-3%)的抗压强度从93.6 MPa提高到170.3 MPa。当Cu含量为2.5%时,Zn-2.5Cu合金的自腐蚀电位达到最大值(-1.048 5V),自腐蚀电流密度和稳定腐蚀速率均达到最小值4.630 4×10-5 A·cm-2和0.076 mm/year。在金黄色葡萄球菌培养液中,与纯Zn相比,Zn-2.5Cu合金抑菌圈直径最大为(29.8±0.3) mm,吸光度值最低为0.20,这说明Zn-2.5Cu合金对金黄色葡萄球菌的抗菌效果更好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李强
赵特
魏磊山
陈明华
孙旭东
关键词:  Zn-Cu合金  生物可降解  耐腐蚀性  金黄色葡萄球菌  抗菌性    
Abstract: Biodegradable Zn-Cu alloys were prepared by powder metallurgy method with Zn and Cu powder as initial materials. The influence of Cu contents on the microstructure, phase composition, compressive strength, corrosion resistance and antibacterial properties of biodegradable Zn-Cu alloys were studied. The results show that Zn-Cu alloys have higher sintering density when adding Cu elements. The Zn-xCu alloys are composed of η phase with the Cu content of 0.5%—2.5%, but the Zn-3.0Cu alloys are composed of η and ε phases with the Cu content of 3.0%. The compressive strength of sintered Zn-xCu alloys (x=0%-3%) increases form 93.6 MPa to 170.3 MPa. The self-corrosion potentials of the Zn-2.5Cu alloys comes to the maximum of -1.048 5 V, but the passivation current density and stable corrosion rate come to the minmum of 4.630 4×10-5 A·cm-2 and 0.076 mm/year, respectively. Compared with pure Zn samples, the inhibition zone size of Zn-2.5Cu sample comes to the maximum of (29.8±0.3) mm and the absorption value of Zn-2.5Cu is the lowest of Abs=0.20 in the Staphylococcus aureus culture medium, which shows the antimicrobial effect of Zn-2.5Cu alloy to S. aureus is better.
Key words:  Zn-Cu alloys    biodegradable    corrosion resistance    S. aureus    antimicrobial property
               出版日期:  2021-04-25      发布日期:  2021-05-10
ZTFLH:  TG178  
基金资助: 国家自然科学基金(51805236);辽宁省教育厅基础研究项目(JJL201915407)
通讯作者:  liandqiangjz@163.com   
作者简介:  李强,辽宁工业大学教授,毕业于东北大学,材料学博士学位,主要从事生物医用材料及表面改性技术的研究。在国内外重要期刊发表学术论文50余篇,主持和参与国家、省部科技项目10余项。
引用本文:    
李强, 赵特, 魏磊山, 陈明华, 孙旭东. Cu含量对生物可降解Zn-Cu合金组织和性能的影响[J]. 材料导报, 2021, 35(8): 8088-8092.
LI Qiang, ZHAO Te, WEI Leishan, CHEN Minghua, SUN Xudong. Effect of Cu Contents on Microstructure and Properties of Biodegradable Zn-Cu Alloys. Materials Reports, 2021, 35(8): 8088-8092.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010012  或          http://www.mater-rep.com/CN/Y2021/V35/I8/8088
1 Hajo Haase, Lothar Rin. Biofactors,2014,40(1),27.
2 Kessels J E, Wessels I, Haase H, et al. Journal of Trace Elements in Medicine & Biology Organ of the Society for Minerals & Trace Elements,2016,37,125.
3 Yang P, Wang Y, Macfarlan T S. Trends in Genetics,2017,33(11),871.
4 Qiao Y, Zhang W, Tian P, et al. Biomaterials,2014,35(25),6882.
5 Bowen P K, Drelich J, Goldman J. Advanced Materials,2013,25(18),2577.
6 Shi Z Z, Yu J, Liu X F, et al. Journal of Materials Science & Technology,2018,34(6),1008.
7 Yang H T, Jia B, Zhang Z H, et al. Nature Communications,2020,11,401.
8 Jin S J, Wang T M, Ren L, et al. Progress in Modern Biomedicine,2018,18(16),3196(in Chinese).
靳淑静,王同敏,任玲,等.现代生物医学进展,2018,18(16),3196.
9 ISO10993-12-2007. Switzerland: ISO,2007.
10 Ding X M, Zhou S H, Ye B, et al. Materials Reports A: Review Papers,2017,31(2),38.
丁学明,周素洪,叶兵,等.材料导报:综述篇,2017,31(2),38.
11 Wang Z, Yang J, Li J J. Chinese Journal of Tissue Engineering Research,2018,22(22),3451(in Chinese).
王湛,杨军,李建军.中国组织工程研究,2018,22(22),3451.
12 Campoccia D, Montanaro L, Arciola C R. Biomaterials,2006,27(11),2331.
13 Ma Z. Preparation and properties of a new antibacterial titanium alloy containing copper. Ph.D. Thesis, Dalian University of Technology, China,2015(in Chinese).
马政.新型含铜抗菌钛合金的制备与性能研究.博士学位论文,大连. 理工大学,2015.
[1] 肖奇, 孙文磊, 刘金朵, 黄海博. Ni60A/WC激光熔覆涂层表面抗蚀行为[J]. 材料导报, 2021, 35(8): 8146-8150.
[2] 朱云娜, 高利霞, 熊彤彤, 杜婵, 张士民, 陈必清. 化学镀工艺制备高耐腐蚀性能的Ni-Co-B-Pr复合镀层[J]. 材料导报, 2021, 35(4): 4159-4164.
[3] 翟建树, 李春燕, 田霖, 卢煜, 寇生中. Fe基非晶涂层耐腐蚀性能的影响因素及提升措施综述[J]. 材料导报, 2021, 35(3): 3129-3140.
[4] 梁广, 朱胜, 王文宇, 王晓明, 韩国峰, 任智强. 铝合金腐蚀防护技术研究现状及发展趋势[J]. 材料导报, 2020, 34(Z2): 429-436.
[5] 赵杰, 钱俊雯, 赵军平. 基于Scopus的生物可降解金属材料文献调研与分析[J]. 材料导报, 2020, 34(Z1): 469-475.
[6] 梁惠东, 郑汉杰, 杨浩, 王晨, 陈俊锋, 汪炳叔. 氮添加量对块体纳米晶NdFeB永磁材料的影响[J]. 材料导报, 2020, 34(8): 8025-8030.
[7] 马潇磊, 张成成, 张朝磊, 马晓艺, 赵海东, 方文. 基于“混杂”设计的索氏体新型不锈钢的组织和性能[J]. 材料导报, 2020, 34(4): 4103-4107.
[8] 瞿猛, 唐建国, 叶凌英, 李承波, 李建湘, 周旺, 邓运来. 过时效与添加Zr对Al-Zn-Mg合金耐腐蚀性能影响的对比[J]. 材料导报, 2020, 34(2): 2083-2087.
[9] 王异彩, 张甜, 李媛. 光聚合PEXS-A水凝胶材料的合成及包埋活细胞的性能[J]. 材料导报, 2020, 34(2): 2169-2173.
[10] 马旻昱, 连勇, 张津. 增材制造技术制备高熵合金的研究现状及展望[J]. 材料导报, 2020, 34(17): 17082-17088.
[11] 李萧, 胡水平, 韩天棋. Nd、Y对AZ31镁合金热轧退火薄板耐蚀性的影响[J]. 材料导报, 2020, 34(10): 10088-10092.
[12] 施佳鑫, 朱卫华, 朱红梅, 陈志勇, 刘晋京, 史新灵, 王新林. CaB6对激光熔覆生物陶瓷涂层组织和生物学性能的影响[J]. 材料导报, 2020, 34(10): 10030-10034.
[13] 孙莉, 陈延明. SDS表面修饰纳米ZnO制备及抗菌性能研究[J]. 材料导报, 2019, 33(Z2): 89-91.
[14] 曾德鹏, 余森, 王岚, 于振涛, 刘印, 盖晋阳, 代晓军. 医用金属材料表面自身纳米化研究进展[J]. 材料导报, 2019, 33(Z2): 343-347.
[15] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed