Please wait a minute...
材料导报  2023, Vol. 37 Issue (16): 21120114-11    https://doi.org/10.11896/cldb.21120114
  高分子与聚合物基复合材料 |
纳米有机杂化材料(NOHMs)用于CO2捕集的研究进展
邱汉宇, 刘红晶*, 姚辉, 刘雪莉, 高洁
沈阳工业大学石油化工学院,辽宁 辽阳111003
Research Progress of Nano Organic Hybrid Materials (NOHMs) for CO2 Capture
QIU Hanyu, LIU Hongjing*, YAO Hui, LIU Xueli, GAO Jie
School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, Liaoning, China
下载:  全 文 ( PDF ) ( 8366KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,纳米有机杂化材料(NOHMs)引起了广泛的研究。不同于捕集CO2的传统胺基溶剂,NOHMs可以在不含任何溶剂的条件下保持类液性,具有可忽略蒸汽压和高热稳定性的特点,因此可以减少溶剂挥发带来的损失以及环保问题,同时减少了对设备的腐蚀,是一种有潜力的替代传统胺基溶剂的吸收剂。同时NOHMs可直接作为吸附剂吸附CO2,也可作为添加剂和其他材料产生协同作用,比如作为分离膜中的掺杂剂加入到聚合物基质中制备混合基质膜,可以显著强化CO2在膜内的传质速率,实现CO2的高效捕集。本文概括了NOHMs在碳捕集领域的研究进展,分别针对共价键和离子键连接的两类NOHMs阐述其核心、内冠、外冠三部分对CO2吸附性能的影响,探讨和归纳了核心的尺寸、孔隙率、含量以及冠层的密度、链长和结构等对NOHMs碳捕集能力的影响机制,总结了以上因素与焓效应和熵效应的对应关系,以及对碳捕集性能的作用。本文将为拓宽NOHMs在CO2捕集领域的应用提供参考与新的研究思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邱汉宇
刘红晶
姚辉
刘雪莉
高洁
关键词:  纳米有机杂化材料  CO2捕集  核壳结构  焓效应  熵效应    
Abstract: In recent years, nano organic hybrid materials (NOHMs) have attracted widespread attention. Different from the traditional amine based solvents that capture CO2, NOHMs can maintain liquid like properties without any solvent, with negligible vapor pressure and high thermal stability. Therefore, it is a potential substitute for traditional amine absorption because the loss caused by solvent volatilization and environmental protection problems can be reduced, and the corrosion of equipment can be avoided. At the same time, NOHMs not only are used as absorbents to absorb CO2 directly,andbut also play a more significant role in CO2 capture as an additive. For example, as a kind of dopant in membrane separation methods, it will play a significant role in enhancing mass transfer in CO2 capture. This paper outlines the research progress of NOHMs in the field of carbon capture, and describes the effects of their core, corona and canopy on the CO2 adsorption performance for two types of NOHMs connected by covalent and ionic bonds, respectively. The effects of core size, porosity, content and canopy density, chain length and structure on the capture of CO2 by NOHMs have been discussed, and the role of enthalpy effect and entropy effect on carbon capture performance has also been summarized. The paper is expected to provide new insights and ideas in broadending applications of NOHMs in the field of CO2 capture.
Key words:  nano organic hybrid materials (NOHMs)    CO2 capture    core-shell structure    enthalpy effect    entropy effect
出版日期:  2023-08-25      发布日期:  2023-08-14
ZTFLH:  TQ028.8  
基金资助: 辽宁省自然科学基金(20170540685;2014020117);辽宁百千万人才项目;辽宁省教育厅重点攻关项目(LZGD2019004)
通讯作者:  *刘红晶,工学博士,沈阳工业大学教授、博士研究生导师。研究方向为膜分离,主要研究膜的制备和膜应用,尤其是膜技术在碳捕集领域的应用。在国内外科技期刊公开发表论文40余篇,被SCI、EI检索20余篇。liuhongjing_101@126.com   
作者简介:  邱汉宇,2019 年 9月于太原工业学院获得工学学士学位。现为沈阳工业大学石油化工学院硕士研究生,在刘红晶教授的指导下进行研究。目前主要研究领域为CO2的捕集与利用。
引用本文:    
邱汉宇, 刘红晶, 姚辉, 刘雪莉, 高洁. 纳米有机杂化材料(NOHMs)用于CO2捕集的研究进展[J]. 材料导报, 2023, 37(16): 21120114-11.
QIU Hanyu, LIU Hongjing, YAO Hui, LIU Xueli, GAO Jie. Research Progress of Nano Organic Hybrid Materials (NOHMs) for CO2 Capture. Materials Reports, 2023, 37(16): 21120114-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120114  或          http://www.mater-rep.com/CN/Y2023/V37/I16/21120114
1 Persson I, Halim J, Lind H, et al. Advanced Materials, 2019, 31(2), 1805472.
2 Buvik V, Vevelstad S J, Brakstad O G, et al. Industrial and Engineering Chemistry Research, 2021, 60(15), 5627.
3 Sheng M L, Dong S L, Qiao Z H, et al. Journal of Membrane Science, 2021, 636, 119595.
4 Wang Y, Yao D, Zheng Y. Advanced Composites and HyMaterials, 2019, 2(3), 608.
5 Geng H, Wu H, Li J, et al. Solid State Ionics, 2020, 349, 115294.
6 Fernandes N J, Wallin T J, Vaia R A, et al. Chemistry of Materials, 2013, 26(1), 84.
7 Lin K, Petit C, Park A. Energy & Fuels, 2013, 27(8), 4167.
8 Petit C, Bhatnagar S, Park A. Journal of Colloid and Interface Science, 2013, 407(10), 102.
9 Jespersen M L, Mirau P A, Meerwall E V, et al. Macromolecules,2013, 46(24), 9669.
10 Chinnam P R, Wunder S L. Chemistry of Materials, 2011, 23(23):5111.
11 Lin K, Yang H, Lee W D, et al. Journal of Molecular Liquids, 2015, 204, 50.
12 Gao M, Petit C, Park A, et al. American Chemical Society Division of Fuel Chemistry Preprints, 2015, 60, 262.
13 Ruan Y B, Gao L, Zhang K, et al. ACS Macro Letters, 2015, 4(10), 1067.
14 Zheng Y P, Zhang J X, Lan L. Chemphyschem, 2010, 11(1), 61.
15 Qi L, Dong L, Deng W, et al. Journal of the American Chemical Society, 2009, 131(26), 9148.
16 Zhou J, Deng T, Li H. Journal of Materials Chemistry, 2011, 21(24), 8521.
17 Maniglia R, Reed K J, Texter J. Journal of Colloid and Interface Science, 2017, 506, 346.
18 Gu S Y, Liu L L, Yan B B. Journal of Polymer Research, 2014, 21(2), 1.
19 Tan Y, Zheng Y, Nan W, et al. Nano-Micro Letters, 2012(4), 208.
20 Zeng C, Tang Z, Guo B, et al. Physical Chemistry Chemical Physics, 2012, 14(28), 9838.
21 Li P P, Zheng Y P, Li M, et al. Materials & Design, 2016, 89,653.
22 Li P P, Yang R L, Qu P, et al. Carbon, 2015, 94, 408.
23 Li P P, Zheng Y P, Yang R L, et al. ChemPhysChem, 2015, 16(12), 2524.
24 Gu S Y, Gao X F, Zhang Y H. Materials Chemistry & Physics, 2015, 149-150, 587.
25 Bai H P, Zheng Y P, Li P P, et al. Chemical Research in Chinese Universities, 2015, 31(3), 484.
26 He H G, Yan Y, Qiu Z M, et al. Progress in Organic Coatings, 2017, 113, 110.
27 Shi T, Wang T Y, Wang Y D, et al. Chemphyschem, 2018, 19(1), 130.
28 Nugent J L, Moganty R S, Archer R A. Advanced Materials, 2010, 22(33), 3677.
29 Jiang M, Li H, Hu D B, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2015, 464, 26.
30 Bourlinos A B, Herrera R, Chalkias N, et al. Advanced Materials, 2005, 17(2), 234.
31 Mark M. Nature, 2004, 432(7018), 688.
32 Park Y, Shi D, Jang Y N, et al. Journal of Chemical & Engineering Data, 2011, 57(1), 40.
33 Yang R, Fan W, Zheng Y, et al. Journal of Materials Science, 2017, 53(7), 5172.
34 Wang D C, Song S, Zhang W, et al. Separation and Purification Techno-logy, 2020, 241, 11678.
35 Mangal R, Srivastava S, Archer L. In: APS Meeting Abstracts.Aamerican, 2016.
36 Bai H P, Zheng Y P, Yang R L. Materials & Design, 2016, 99, 145.
37 Petit C, Lin K Y, Park A. Langmuir, 2013, 29(39), 12234.
38 Flichy N, Kazarian S G, Lawrence C J, et al. Journal of Physical Chemistry B, 2015, 106(4),754.
39 Park Y, Decatur J, Lin K Y, et al. Physical Chemistry Chemical Physics, 2011, 13(40), 18115.
40 Choi S, Moon S, Park Y. Langmuir, 2020, 36(32), 9626.
41 Agarwal P, Qi H, Archer L A. Nano Letters, 2010, 10(1), 111.
42 Yamamoto E, Shimojima A, Wada H, et al. Langmuir, 2020, 36(20), 5571.
43 Qi L, Dong L, Deng W, et al. Journal of the American Chemical Society, 2009, 131(26), 9148.
44 Park Y, Petit C, Han P, et al. RSC Advances, 2014, 4(17), 8723.
45 Qu P, Zheng Y, Yang R, et al. Colloid & Polymer Science, 2015, 293, 1623.
46 Yang R L, Zheng Y P, Li P, et al. RSC Advances, 2016, 6(89), 85970.
47 Haque M A, Feric T G, Hamilton S T, et al. The Journal of Physical Chemistry C, 2021, 125(9), 5327.
48 Hong B, Panagiotopoulos A Z. The Journal of Physical Chemistry. B, 2012, 116(8), 2385.
49 Youngjune P, Lin K Y, Alissa A H, et al. Frontiers in Energy Research, 2015, 3, 42.
50 Srivastava S, Choudhury S, Agrawal A, et al. Current Opinion in Chemical Engineering, 2017, 16, 92.
51 Wang D C, Song S, Zheng W R, et al. Separation and Purification Technology, 2020, 241, 116708.
52 Sheng L S, Yi W A. Applied Surface Science, 2021, 536, 147951.
53 Sheng L S, Chen Z, Wang Y,Journal of Molecular Liquids, 2021, 333(3), 115890.
54 Yang M J, Deng B B, Ma Z. Materials Reports, 2017, 31(12), 136 (in Chinese).
杨明君, 邓彬彬, 马占.材料导报, 2017, 31(12), 136.
55 Osman A I, Hefny M, Maksoud M, et al. Environmental Chemistry Letters, 2020, 19(2), 797.
56 Yang R L, Zheng Y P, Wang T, et al. Nanotechnology, 2018, 29, 039204.
57 Bai H P, Zheng Y P, Wang T, et al. Journal of Materials Chemistry A, 2016, 4, 14392.
58 Wang D C, Xin Y, Li X, et al. ACS Applied Materials & Interfaces, 2021, 13(2), 2600.
59 Lin K Y, Park A H. Environmental Science & Technology, 2011, 45(15), 6633.
60 Yang R L, Zheng Y P, Li P P, et al. New Journal of Chemistry, 2017, 41(2), 603.
61 Cheng J, Wang Y, Hu L, et al. Journal of Membrane Science, 2019, 597, 117644.
62 Li S W, Sun H G, He S S, et al. Journal of Membrane Science, 2019, 586, 185.
63 Wang J, Fang W, Luo J, et al. Journal of Membrane Science, 2019, 584, 79.
64 Wang D C, Zheng Y P, Yao D D, et al. New Journal of Chemistry, 2019, 43, 11949.
65 Zhang W Z, Guo R T, Qin Y, et al. Materials Reports, 2021, 35(21), 21058 (in Chinese).
张中伟, 郭瑞堂, 秦阳, 等.材料导报, 2021, 35(21), 21058.
[1] 易周, 崔世宇, 罗军明, 初雨轩. 溶胶-凝胶法制备核壳结构MoSi2@Al2O3颗粒及其形成机理[J]. 材料导报, 2023, 37(16): 22010273-6.
[2] 苏宇, 翁凌, 王小明, 关丽珠, 张笑瑞. 核壳结构SiCNWs@SiO2/PVDF复合材料的制备与介电储能特性[J]. 材料导报, 2023, 37(11): 22010127-11.
[3] 齐致雍, 高凤雨, 唐晓龙, 易红宏, 杜影. 核壳催化剂用于大气污染控制的研究进展[J]. 材料导报, 2023, 37(10): 21060234-12.
[4] 姜超, 华楚侨, 温变英. MOFs基核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2022, 36(16): 21030206-10.
[5] 郭佳乐, 赵齐仲, 田方华, 张垠, 周超, 杨森. 室温交换偏置效应的研究进展[J]. 材料导报, 2021, 35(Z1): 297-301.
[6] 范文琦, 潘登, 黄亮, 王强. 工业固废和廉价矿石制备高循环稳定性高温CO2捕集材料的研究进展[J]. 材料导报, 2021, 35(17): 17090-17102.
[7] 谢登敏, 钱春香, 张霄. 微生物矿化沉积技术强化核壳结构再生粗骨料[J]. 材料导报, 2021, 35(1): 1030-1035.
[8] 杨振楠, 刘芳, 李朝龙, 郑超, 曾有福, 郑鑫, 罗梅, 史浩飞. 核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2020, 34(7): 7061-7070.
[9] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[10] 翟乐, 吉海峰, 姚艳梅, 瞿雄伟. 利用聚丙烯酸正丁酯@聚甲基丙烯酸甲酯核/壳结构聚合物增韧氰酸酯树脂[J]. 材料导报, 2019, 33(4): 705-708.
[11] 杨亚文, 王娜, 任俊芳, 高贵, 陈生圣, 王宏刚. 核壳纳米复合润滑材料研究进展[J]. 材料导报, 2019, 33(19): 3242-3250.
[12] 冯爱玲, 徐榕, 王彦妮, 张亚妮, 林社宝. 核壳型稀土上转换纳米材料及其生物医学应用[J]. 材料导报, 2019, 33(13): 2252-2259.
[13] 孙培川, 魏清茂, 张宇振, 杨喜昆, 王剑华. 核壳型铂基燃料电池催化剂制备方法与微结构控制综述[J]. 《材料导报》期刊社, 2018, 32(9): 1427-1434.
[14] 董虹星, 刘秋平, 贺跃辉. BiVO4基纳米异质结光催化材料的研究进展[J]. 材料导报, 2018, 32(19): 3358-3367.
[15] 李延安, 董海泉, 徐丽娜, 李蛟. 硅丙乳液包覆Mg(OH)2核壳结构纳米粒子的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(18): 97-101.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed