Please wait a minute...
材料导报  2023, Vol. 37 Issue (16): 21120065-8    https://doi.org/10.11896/cldb.21120065
  金属与金属基复合材料 |
温度和甲酸镍含量对制备Zn-Ni合金渗层的影响
徐鹏辉1, 王胜民1,*, 乐林江2, 肖敏1, 赵晓军1
1 昆明理工大学材料科学与工程学院,昆明 650093
2 盐城科奥机械有限公司,江苏 盐城 224008
Effect of Temperature and Nickel Formate Content on the Preparation of Zn-Ni Cementation Layer
XU Penghui1, WANG Shengmin1,*, LE Linjiang2, XIAO Min1, ZHAO Xiaojun1
1 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 Yan Cheng Keao Machinery Co., Ltd., Yancheng 224008, Jiangsu, China
下载:  全 文 ( PDF ) ( 11930KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为改善渗锌层的防腐性能,通过在渗锌过程添加甲酸镍制备了Zn-Ni合金渗层,分析了不同温度(400 ℃、450 ℃、500 ℃、550 ℃、600 ℃)和不同甲酸镍含量(0 g、15 g、44 g、75 g、103 g)对渗层制备过程的影响。采用扫描电镜(SEM,配备有EDS能谱)、X射线衍射仪(XRD)分析了不同试样渗层截面形貌和物相组成;采用电化学极化曲线和阻抗谱(EIS)表征了不同试样在3.5%(质量分数,下同)NaCl溶液中的电化学行为,并通过中性盐雾实验测试了渗层的耐蚀性能;利用显微维氏硬计测试渗层表面至基体不同相层硬度。结果表明:随温度的升高渗层显著增厚,渗层表面硬度降低;随甲酸镍含量的增加渗层明显减薄,渗层中ZnO、Fe3ZnC0.5相衍射峰明显增强,渗层中间相层硬度值增大;温度和甲酸镍含量对渗层自腐蚀电位无明显影响,腐蚀电流密度随温度的升高而增大,随甲酸镍含量的增大而明显减小;试样阻抗弧半径和渗层电阻均随甲酸镍含量的增加而增大;甲酸镍含量越高,对盐雾实验白锈的出现抑制越明显,出现红锈的时间显著延长。综上所述,添加甲酸镍显著改善了渗锌层的组织结构,明显提高了渗层的耐腐蚀性能,这对促进锌-镍合金共渗技术的应用具有积极意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐鹏辉
王胜民
乐林江
肖敏
赵晓军
关键词:  Zn-Ni合金渗层  电化学行为  渗层显微硬度  耐腐蚀性  甲酸镍含量    
Abstract: In order to improve the anti-corrosion performance of sherardizing layer, zinc-nickel alloy cementation layer was prepared by adding nickel formate in the sherardizing process. The effects of temperature (400 ℃,450 ℃,500 ℃,550 ℃,600 ℃)and nickel formate content(0 g,15 g,44 g,75 g,103 g) on the formation process of the infiltration layer are analyzed. Scanning electron microscope (SEM, equipped with EDS spectrum) and X-ray diffractometer (XRD) were used to analyze the cross-sectional morphology and phase composition of different samples; lectrochemical polarization curve and impedance spectroscopy (EIS) were used to characterize the different the electrochemical behavior of the sample in 3.5wt% NaCl solution, and the corrosion resistance of the cementation layer was tested by a neutral salt spray experiment; the hardness of different phase layers from the surface of the cementation layer to the substrate was tested by a micro Vickers hardness tester. The results show that: with the increase of temperature, the cementation layer is thickens obviously and the surface hardness of the cemented layer decreases; with the increase of nickel formate content, the cementation layer is thins obvlously, and the diffraction peaks of ZnO and Fe3ZnC0.5 phase are significantly enhanced, and the intermediate phase of the cementation layer's hardness value increases; temperature and nickel formate content have no obvious effect on the self-corrosion potential. The corrosion current density increases with the increase of temperature, and obviously decreases with the increase of nickel formate content; the sample impedance arc radius and the resistance of the cementation layer increases with the increase of nickel formate content; the higher the nickel formate content, the less white rust appears in the salt spray test, and the time for red rust appears to be significantly longer. In summary, the addition of nickel formate significantly improves the structure of the sherardized layer, and significantly improves the corrosion resistance of the cementation layer. It is of positive significance to promote the application of zinc-nickel alloy co-cementation technology.
Key words:  Zn-Ni co-cementation layer    electrochemical behavior    micro-hardness of the coating    corrosion resistance    content of nickel formate
出版日期:  2023-08-25      发布日期:  2023-08-14
ZTFLH:  TG147.445  
基金资助: 国家自然科学基金(52161013)
通讯作者:  *王胜民,昆明理工大学材料科学与工程学院教授、博士研究生导师。1999年7月昆明理工大学本科毕业,2002年4月于昆明理工大学硕士毕业工作至今,2010年12月于昆明理工大学获得博士学位。目前主要从事金属材料表面防腐等方面的研究工作。发表论文60余篇,获授权发明专利21项,出版专著3部。先后荣获云南省自然科学三等奖1项、云南省高等教育教学成果一等奖1项、云南省职工创新技术成果三等奖1项、绿色制造科学技术进步奖三等奖1项。wsmkm2000@sina.com   
作者简介:  徐鹏辉,2019年6月毕业于重庆文理学院,获得工学学士学位。目前就读于昆明理工大学材料加工工程专业。在王胜民教授的指导下进行研究,目前主要研究领域为金属表面防腐。
引用本文:    
徐鹏辉, 王胜民, 乐林江, 肖敏, 赵晓军. 温度和甲酸镍含量对制备Zn-Ni合金渗层的影响[J]. 材料导报, 2023, 37(16): 21120065-8.
XU Penghui, WANG Shengmin, LE Linjiang, XIAO Min, ZHAO Xiaojun. Effect of Temperature and Nickel Formate Content on the Preparation of Zn-Ni Cementation Layer. Materials Reports, 2023, 37(16): 21120065-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120065  或          http://www.mater-rep.com/CN/Y2023/V37/I16/21120065
1 Lu Y P, Yu F Z.Shendu, Machinery Industry Press, China, 1985, pp. 18 (in Chinese).
卢燕平, 于福洲.渗镀, 机械工业出版社, 1985,pp. 18.
2 Zhang X H, Yu S R, Liu Y, et al.Surface Technology, 2020, 49(11), 141 (in Chinese).
张潇华, 于思荣, 刘彦, 等.表面技术, 2020, 49(11), 141.
3 Zhang S Q, Zhang Y Q, Yu H Y, et al.Railway Engineering, 2021, 61(2), 122 (in Chinese).
张松琦, 张远庆, 于毫勇, 等.铁道建筑, 2021, 61(2), 122.
4 Liang Y, Zhou Y L, Sheng Z Q, et al.China Surface Engineering, 2020, 33(2), 65 (in Chinese).
梁义, 周云龙, 盛忠起, 等.中国表面工程, 2020, 33(2), 65.
5 Zhang J N, Peng Y, Cheng X Q. In:2015 2nd Marine Material Corrosion and Protection Conference. Beijing, 2015, pp. 3 (in Chinese).
章嘉能, 彭阳, 程学群. 2015第二届海洋材料与腐蚀防护大会. 北京, 2015, pp. 3.
6 Sun F. Research on powder sherardizing and dacromet composite protection technology.Master's Thesis, Xi'an University of Technology, China, 2016 (in Chinese).
孙菲. 粉末渗锌与达克罗复合防护技术研究. 硕士学位论文, 西安理工大学, 2016.
7 Gur A M, Krasnikov K A, Zemlyakov S A, et al.Metallurgist, 2021, 65, 3.
8 Lin N M, Zhao L L, Liu Q, et al.Journal of Physics and Chemistry of Solids, 2019, 129, 387.
9 Li L B, Li Z X, Liu L T, et al.Rare Metal Materials and Engineering, 2021, 50(5), 1743 (in Chinese).
李龙博, 李争显, 刘林涛, 等.稀有金属材料与工程, 2021, 50(5), 1743.
10 Zhuang G S, Ma Y, Xu Y, et al.Heat Treatment of Metals, 2000(12), 25 (in Chinese).
庄光山, 马勇, 徐英, 等.金属热处理, 2000 (12), 25.
11 Li C H. Process and properties of Zn-Al co-cementation on medium carbon steel.Master's Thesis, Hebei University of Technology, China, 2017 (in Chinese).
李春红. 中碳钢Zn-Al共渗工艺及性能研究. 硕士学位论文, 河北工业大学, 2017.
12 He Z X, Su X P, Peng H P, et al.China Surface Engineering, 2016, 29(6), 44 (in Chinese).
何祖新, 苏旭平, 彭浩平, 等.中国表面工程, 2016, 29(6), 44.
13 Peng H P, Xu N, He Z X, et al.Journal of Changzhou University(Natural Science Edition), 2019, 31(4),39 (in Chinese).
彭浩平, 徐宁, 何祖新, 等.常州大学学报(自然科学版), 2019, 31(4), 39.
14 Abou-Krisha M M, Assaf F H, Ei-Naby S A, et al.Arabian Journal of Chemistry, 2016, 9(2), 1349.
15 Zhang X, Wang S L, Long J M, et al.Materials Reports, 2013, 27(14), 120 (in Chinese).
张秀, 王少龙, 龙晋明, 等.材料导报, 2013, 27(14), 20.
16 Fratesi R, Ruffini N, Bellezze T, et al.Surface and Coatings Technology, 2002, 157(1), 34.
17 Dai H B, Wang G B.Surface Technology, 1996(1), 9. (in Chinese)
戴洪斌, 王国.表面技术, 1996(1), 9.
18 Wang A B. Study on properties of Fe-Ni alloy prepared by laser and magnetic field assisted electro-deposition. Master's Thesis, Jiangsu University, China, 2020 (in Chinese).
王安斌. 激光和磁场辅助电沉积制备铁镍合金及其性能研究. 硕士学位论文, 江苏大学, 2020.
19 Zhang Q, Zhang X H, Cheng L, et al.Modern Paint and Finishing, 2020, 23(7), 11 (in Chinese).
张琪, 张潇华, 成琳, 等.现代涂料与涂装, 2020, 23(7), 11.
20 Dong R H, Li M S, Wang X C, et al.Journal of Shandong University(Engineering Science), 2008, 38(6), 91 (in Chinese).
董瑞华, 李木森, 王修春, 等.山东大学学报(工学版), 2008, 38(6), 91.
21 Gao C. Sherardizing process and its effect on microstructure and corrosion resistance.Master's Thesis, Hebei University of Technology, China, 2015 (in Chinese).
高聪. 粉末渗锌工艺及其对组织和耐蚀性的影响. 硕士学位论文, 河北工业大学, 2015.
22 Liu Q, Wang J H, Peng H P, et al.Materials Reports, 2012, 26(16), 83 (in Chinese).
刘赛, 王建华, 彭浩平, 等.材料导报, 2012, 26(16), 83.
23 Li M F, Zhang J Q, Zhou C G, et al.Surface and Coatings Technology, 2018, 337(15), 68.
24 Norihiko L O, Daisuke K, Masahiro I, et al.Scripta Materialia, 2013, 69(4), 307.
25 Mccafferty E, Zettlemoyer A C.Journal of Physical Chemistry, 1967, 71(8), 2444.
26 Zhang Q, Liu G C, Liu C Y, et al.Materials Protection, 2011, 44(5), 66 (in Chinese).
章强, 刘贵昌, 刘重阳, 等.材料保护, 2011, 44(5), 66.
27 Vourlias G, Piatofidis N, Chaliampalias D, et al.Surface and Coatings Technology, 2006, 200(22-23), 6594.
28 Peng S, Xie S K, Lu J T, et al.Journal of Alloys and Compounds, 2017, 728(25), 1002.
[1] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[2] 罗圆, 王献, 赵君, 胡昌义, 张大伟, 魏燕, 张诩翔, 蔡宏中. Pt-Co-Mn合金组织结构及性能研究[J]. 材料导报, 2023, 37(10): 21060215-5.
[3] 李亮星, 朱志城, 贾孟熹, 黄茜琳. 硬质合金废料电解回收钨及W(Ⅵ)在熔盐中的电化学行为[J]. 材料导报, 2022, 36(Z1): 22010043-6.
[4] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[5] 何国宁, 蒋波, 何博, 胡学文, 刘雅政. 集装箱用高强度耐候钢的开发及研究现状[J]. 材料导报, 2022, 36(4): 20090318-9.
[6] 谭海丰, 侯梦晴, 吴晨, 贺春林, 张滨. 镍基石墨烯复合材料的研究进展[J]. 材料导报, 2022, 36(24): 21040029-6.
[7] 胡勇, 刘飞, 刘员员, 赵龙志, 焦海涛, 唐延川, 刘德佳. AlMgLi0.5Zn0.5Cu0.2轻质高熵合金的组织和耐腐蚀性研究[J]. 材料导报, 2022, 36(14): 22010093-6.
[8] 封帆, 王美玲, 李振华, 陆永浩. 超超临界机组用HR3C奥氏体耐热钢研究进展[J]. 材料导报, 2021, 35(9): 9186-9195.
[9] 李强, 赵特, 魏磊山, 陈明华, 孙旭东. Cu含量对生物可降解Zn-Cu合金组织和性能的影响[J]. 材料导报, 2021, 35(8): 8088-8092.
[10] 肖奇, 孙文磊, 刘金朵, 黄海博. Ni60A/WC激光熔覆涂层表面抗蚀行为[J]. 材料导报, 2021, 35(8): 8146-8150.
[11] 朱云娜, 高利霞, 熊彤彤, 杜婵, 张士民, 陈必清. 化学镀工艺制备高耐腐蚀性能的Ni-Co-B-Pr复合镀层[J]. 材料导报, 2021, 35(4): 4159-4164.
[12] 翟建树, 李春燕, 田霖, 卢煜, 寇生中. Fe基非晶涂层耐腐蚀性能的影响因素及提升措施综述[J]. 材料导报, 2021, 35(3): 3129-3140.
[13] 杨浩, 王成, 肖小波, 王晨, 陈俊锋, 汪炳叔, 张维林, 崔熙贵. 添加硼酸和钨酸铵对取向硅钢无铬绝缘涂层的影响[J]. 材料导报, 2021, 35(22): 22141-22145.
[14] 狄翀博, 王金华, 闫二虎, 王星粤, 陈运灿, 贾丽敏, 徐芬, 孙立贤. Nb-Ti-Co氢分离合金的显微组织和耐腐蚀性能[J]. 材料导报, 2021, 35(18): 18109-18115.
[15] 曹明艳, 俞爱斌, 吴玉萍, 乔磊, 程杰. 氧化石墨烯/聚酯树脂涂层的制备及耐腐蚀性能[J]. 材料导报, 2021, 35(10): 10227-10231.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed