Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 20090318-9    https://doi.org/10.11896/cldb.20090318
  金属与金属基复合材料 |
集装箱用高强度耐候钢的开发及研究现状
何国宁1,2, 蒋波1,*, 何博3, 胡学文3, 刘雅政1
1 北京科技大学材料科学与工程学院,北京 100083
2 北京科技大学新材料技术研究院,北京 100083
3 马鞍山钢铁股份有限公司技术中心,安徽 马鞍山 243041
Development and Research Status of High Strength Weathering Steel for Container
HE Guoning1,2, JIANG Bo1,*, HE Bo3, HU Xuewen3, LIU Yazheng1
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
3 Technology Center, Maanshan Iron & Steel Co., Itd., Maanshan 243041, Anhui, China
下载:  全 文 ( PDF ) ( 3996KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 耐候钢在自然环境中与空气、雨水等发生反应,表面会形成稳定而致密的保护性锈层,相对于普碳钢,其具有较高的耐腐蚀性,因此,被大量应用于石油钻井、集装箱、铁道车辆等使用环境恶劣、对耐腐蚀性能有一定要求的结构中。近年来,在中欧班列、中亚班列等线路的快速发展以及“一带一路”战略和高速治超等国家政策的支持导向下,铁路集装箱运输行业得到迅速发展,集装箱的轻量化、减薄化是其未来主要的发展方向。作为铁路集装箱主要材料的耐候钢,尤其是屈服强度为700 MPa级的高强耐候钢,由于其具有高的强度,可以大幅减轻集装箱的质量,实现集装箱的减薄,将得到大量应用。国外耐候钢开发起步较早,已经大规模推广应用,而我国的耐候钢虽然已经有所应用,但应用进展缓慢,仍需要开展高强度、高耐腐蚀性耐候钢的研发工作,以满足铁路集装箱的应用需求。
目前,国内外学者对耐候钢的研究主要集中于不同成分体系下的耐腐蚀机理以及强韧化机理。本文从耐候钢的耐腐蚀机理、强韧化机理以及焊接性能方面进行了综述,主要针对钢的强韧性、焊接性以及耐候性等方面进行考虑,结合国内外耐候钢研究开发的经验,提出了高强度耐候钢化学成分设计思路和变形制度、温度制度和冷却制度的控制建议,确定了700 MPa以下级别高强耐候钢显微组织主要为铁素体+珠光体或粒状贝氏体;而700 MPa级别高强耐候钢显微组织控制目标则为细小的针状铁素体或粒状贝氏体。通过固溶强化、细晶强化、析出强化以及相变强化等多种手段满足性能要求,为今后集装箱用高强度耐候钢的研究和设计提供参考及依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何国宁
蒋波
何博
胡学文
刘雅政
关键词:  耐候钢  耐腐蚀性  成分设计  高强度  焊接性    
Abstract: Weathering steel reacted with air and rainwater in natural environment, and then an anticorrosion protective layer was formed on its surface. Thus the weathering steel had higher corrosion resistance than ordinary carbon steel. Therefore, it has been widely used on oil drilling, containers, railway vehicles and other structures with adverse and corrosive working condition. In recent years, with the China-Europe train, China-Asian train and other lines rapidly developing, and the support of state policies such as One belt, One road strategy and Expressway Entrance Control, railway container transport has been expanding in China. Light weight and thinning of container will be the main development direction in the future. As a railway container material, weathering steel, especially high strength weathering steel with yield strength of 700 MPa, can reduce the weight of container and realize the thinning of container, so it will be widely used. The development of weathering steel in foreign countries started earlier and had been widely applied. Although the weathering steel in China has been applied in some places, the application progress is still slow. It is necessary to carry out the research and development of weathering steel with high strength and high corrosion resistance to meet the application requirements of railway containers.
At present, domestic and foreign scholars have mainly focused on the corrosion resistance and strengthening and toughening mechanism of weathering steel with different chemical compositions. In this paper, the corrosion resistance mechanism, the mechanism of strength and plasticity and the weldability of weathering steel were reviewed. Considering the strength, toughness, weldability, weather resistance of steel and the research and development experiences of weathering steel, the chemical composition design and the control strategies of deformation, temperature and cooling schedules of ultra-high strength weathering steel were put forward. It was determined that the microstructure of high strength weathering steel below 700 MPa was mainly ferrite+pearlite or granular bainite, while the microstructure of 700 MPa grade high strength weathering steel was fine acicular ferrite or granular bainite. The performance requirements can be met by combining multiple strengthening mechanism such as solution strengthening, fine grain strengthening, precipitation strengthening and phase transformation strengthening. The paper provided refe-rence and basis for the research and design of high strength weathering steel for containers in the future.
Key words:  weathering steel    corrosion resistance    composition design    high strength    weldability
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  TG142.1  
通讯作者:  jiangbo@ustb.edu.cn   
作者简介:  何国宁,2019年1月毕业于北京科技大学,获得工学硕士学位。现为北京科技大学材料科学与工程专业博士研究生,目前主要研究领域为板带轧制、特殊钢棒材轧制工艺研究及组织性能控制。
蒋波,北京科技大学副教授,硕士生导师,美国匹兹堡大学访问学者,入选2017年度青海省第二批“高端创新人才千人计划”拔尖人才。2006年9月至2016年1月,在北京科技大学获得冶金工程专业工学学士学位和材料科学与工程专业工学博士学位,毕业后留校任教。以第一作者在国内外学术期刊上发表论文20余篇,申请国家发明专利7项,其中授权5项。2017获得北京科技大学“优秀博士后”称号,并担任多个学术期刊的审稿人。研究工作主要围绕国家重点发展的先进金属材料,开展关于先进加工工艺以及组织性能控制的基础理论和应用研究,主持包括国家自然科学基金青年项目、中国博士后科学基金面上项目、中央高校基本科研业务费以及博士后国际交流计划学术交流项目等。
引用本文:    
何国宁, 蒋波, 何博, 胡学文, 刘雅政. 集装箱用高强度耐候钢的开发及研究现状[J]. 材料导报, 2022, 36(4): 20090318-9.
HE Guoning, JIANG Bo, HE Bo, HU Xuewen, LIU Yazheng. Development and Research Status of High Strength Weathering Steel for Container. Materials Reports, 2022, 36(4): 20090318-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090318  或          http://www.mater-rep.com/CN/Y2022/V36/I4/20090318
1 Wang Z K.Shanxi Architecture, 2018, 44(10), 98(in Chinese).
王志坤. 山西建筑, 2018, 44(10), 98.
2 Ye Y J, Chen S W. In: Conference Record of the 2015 Steel Construction Industry Conference. Jinan, 2015, pp. 422(in Chinese).
叶永健, 陈素文. 2015中国钢结构行业大会. 济南, 2015, pp. 422.
3 Chen M Q, Chen Y, Lu Y Q. Geographical Research, 2018, 37(2), 404(in Chinese).
陆梦秋, 陈娱, 陆玉麒.地理研究, 2018, 37(2), 404.
4 Xu Q, He T J, Mao B H.Journal of Transportation Systems Engineering and Information Technology, 2018, 18(6), 198(in Chinese).
许奇, 何天健, 毛保华.交通运输系统工程与信息, 2018, 18(6), 198.
5 Larrabee C P.Corrosion Engineering, 2014, 3(8), 259.
6 Wang Z B. High strength low alloy steel, Atomic Energy Press, China, 1996(in Chinese).
王祖滨. 低合金高强度钢, 原子能出版社, 1996.
7 Concli F, Maccioni L. Procedia Structural Integrity, 2019, 24, 738.
8 Hu X Y. The effect of alloying and hot-rolling process on the microstructures and mechanical properties of low-carbon bainitic weathering steels. Master's Thesis, Northeastern University, China, 2011(in Chinese).
胡霄雨. 合金元素和轧制工艺对低碳贝氏体耐候钢组织和力学性能影响. 硕士学位论文,东北大学, 2011.
9 Borko K, Hadzima B, Jacková M N. Procedia Engineering, 2017, 192, 58.
10 Kurc-Lisiecka A, Lisiecki A. Materiali in Tehnologije, 2017, 51(2), 199.
11 Cvetkovski S T. Key Engineering Materials, 2017, 750, 45.
12 Chen F H, Gao Z F, Huang W, et al. Shanghai Metals, 2017, 39(1), 70(in Chinese).
陈付红, 高真凤, 黄维, 等.上海金属, 2017, 39(1), 70.
13 Wang D C, Guo L. Science Technology of Baotou Steel Group Corporation, 1993(3), 59(in Chinese).
王栋材, 郭亮.包钢科技, 1993(3), 59.
14 Lu J X, Li A B, Li Z G, et al. China Metallurgy, 2004(12), 23(in Chinese).
陆匠心, 李爱柏, 李自刚, 等.中国冶金, 2004(12), 23.
15 Chen K L. World Bridges, 2020, 48(1), 47(in Chinese).
陈开利.世界桥梁, 2020, 48(1), 47.
16 Song R B, Wen X L, Zhang Y K. Materials Science and Technology, 2011, 19(3), 106(in Chinese).
宋仁伯, 文新理, 张永坤.材料科学与工艺, 2011, 19(3), 106.
17 Chen Q J, Kang Y L, Su S H, et al. Iron Steel, 2005, 40(7), 60(in Chinese).
陈庆军, 康永林, 苏世怀, 等.钢铁, 2005, 40(7), 60.
18 Li H Y, Kang Y L, Wang J J, et al. Journal of Wuhan University of Science and Technology, 2010, 33(1), 47(in Chinese).
李慧远, 康永林, 王建景, 等.武汉科技大学学报, 2010, 33(1), 47.
19 Zhao P L, Sun X J, Tang H S, et al. Special Steel, 2012, 33(1), 46(in Chinese).
赵培林, 孙新军, 汤化胜, 等.特殊钢, 2012, 33(1), 46.
20 Gao J X. Study on microstructure and properties of ultra-high strength weathering steel produced by TSCR. Ph.D. Thesis, South China University of Technology, China, 2012(in Chinese).
高吉祥. 薄板坯连铸连轧超高强耐候钢的组织性能研究. 博士学位论文, 华南理工大学, 2012.
21 Wang B. Effects and mechanism of Mn, Cr and V-N alloying in low carbon weathering steel. Ph.D. Thesis, Northeastern University, China, 2008(in Chinese).
王博. 锰铬及钒氮合金化在低碳耐候钢中的作用机理. 博士学位论文, 东北大学, 2008.
22 Qu P. China Metallurgy, 2009, 19(6), 19(in Chinese).
曲鹏.中国冶金, 2009, 19(6), 19.
24 Chen S G, Wang L, Li X L, et al. China Metallurgy, 2016, 26(3), 17(in Chinese).
陈守关, 王莉, 李晓林, 等.中国冶金, 2016, 26(3), 17.
25 Liu X C, Zhang Z Z, Li W Y, et al. Steel Rolling, 2019, 36(4), 31(in Chinese).
刘晓翠, 张转转, 李文远, 等.轧钢, 2019, 36(4), 31.
25 Okada H, Hosoi Y, Yukawa K I, et al. Tetsu-to-Hagane, 2010, 55(5), 355.
26 Kihira H, Ito S, Murata T. Corrosion Science, 1990, 31, 383.
27 Misawa T, Asami K, Hashimoto K, et al. Corrosion Science, 1974, 14(4), 279.
28 Keiser J T, Brown C W, Heidersbach R H.Corrosion Science, 1983, 23(3), 251.
29 Yamashita M, Miyuki H, Matsuda Y, et al. Cheminform, 1994, 25(19), 283.
30 Yamashita M, Nagano H, Misawa T, et al. ISIJ International, 1998, 38(3), 285.
31 Zhang Q C. Materials Review, 2004, 18(Z1), 169(in Chinese).
张全成.材料导报, 2004, 18(专辑3), 169.
32 Stratmann M, Bohnenkamp K, Ramchandran T.Corrosion Science, 1987, 27(9), 905.
33 Cao T H. Copper enrichment behavior of steel with copper addition during oxidation process. Master's Thesis, University of Science and Technology Liaoning, China, 2015(in Chinese).
曹桐赫. 含铜钢氧化过程中铜的富集行为研究. 硕士学位论文,辽宁科技大学,2015.
34 Kihira H, Ito S, Murata T.Corrosion Science, 1990, 31, 383.
35 Zhang Q C, Wu J S, Yang X S, et al. Materials Protection, 2002, 35(3), 21(in Chinese).
张全成, 吴建生, 杨晓芳, 等.材料保护, 2002, 35(3), 21.
36 Hao L, Zhang S, Dong J, et al. Corrosion Science, 2011, 53(12), 4187.
37 Diaz I, Cano H, Fuente D D L, et al. Corrosion Science, 2013, 76(2), 348.
38 Hao X C, Xiao K, Zhang H Q, et al. Materials Protection, 2009, 42(1), 21(in Chinese).
郝献超, 肖葵, 张汉青, 等.材料保护, 2009, 42(1), 21.
39 Tian J, Zhang K, Wang J.Materials Protection, 2019, 52(11), 33(in Chinese).
田骏, 张昆, 王金.材料保护, 2019, 52(11), 33.
40 Wang Y, Zeng J.Surface & Coatings Technology, 2014, 245, 55.
41 Wang Y J.Locomotive Rolling Stock Technology, 1992(1), 11(in Chinese).
王英杰.机车车辆工艺, 1992(1), 11.
42 Liu J R, Zhang W L, Liu Z S.Research on Iron and Steel, 2010, 38(4), 17(in Chinese).
刘建容, 张万灵, 刘正生.钢铁研究, 2010, 38(4), 17.
43 Fajardo S, Llorente I, Jimenez J A, et al. Corrosion Science, 2019, 154, 246.
44 Moon K M, Kim D A, Kim Y H, et al. International Journal of Modern Physics B, 2018, 32(19),1840083.
45 Liu X C, Zhang Z Z, Liu K, et al. Steel Rolling, 2019, 36(6), 17(in Chinese).
刘晓翠, 张转转, 刘锟, 等.轧钢, 2019, 36(6), 17.
46 Li Y, Shao M R, Zhao Z W. Corrosion and Protection, 2019, 40(9), 627(in Chinese).
李岩, 邵明蕊, 赵增武.腐蚀与防护, 2019, 40(9), 627.
47 Liu Q C. Effect of vanadium on the high strength steels used for railway freight cars. Ph.D. Thesis, Kunming University of Science and Techno-logy, China, 2016(in Chinese).
刘庆春. 钒在铁路货车用高强度钢中的作用研究. 博士学位论文, 昆明理工大学, 2016.
48 Chi X B.Bengang Technology, 1995(5), 58(in Chinese).
迟秀斌.本钢技术, 1995(5), 58.
49 Townsend H E.Corrosion, 2001, 57(6), 497.
50 Legault R A, Mori S, Leckie H P.Corrosion, 1973, 29(5), 169.
51 Qing J S, Shen H F, Liu M. Iron Steel, 2017, 52(5), 87(in Chinese).
卿家胜, 沈厚发, 刘明.钢铁, 2017, 52(5), 87.
52 Zhang H M, Liu X H, Wang G D. Journal of Iron and Steel Research, 2001, 13(1), 36(in Chinese).
张红梅, 刘相华, 王国栋.钢铁研究学报, 2001, 13(1), 36.
53 Wang J F, Wang Z G, Wang X D, et al. Scripta Materialia, 2017, 129, 25.
[1] 彭天恩, 连智伟, 何博, 胡学文, 蒋波, 刘雅政. 工艺参数对经济型耐候钢显微组织及硬化机理的影响[J]. 材料导报, 2022, 36(2): 20120194-6.
[2] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[3] 封帆, 王美玲, 李振华, 陆永浩. 超超临界机组用HR3C奥氏体耐热钢研究进展[J]. 材料导报, 2021, 35(9): 9186-9195.
[4] 李强, 赵特, 魏磊山, 陈明华, 孙旭东. Cu含量对生物可降解Zn-Cu合金组织和性能的影响[J]. 材料导报, 2021, 35(8): 8088-8092.
[5] 肖奇, 孙文磊, 刘金朵, 黄海博. Ni60A/WC激光熔覆涂层表面抗蚀行为[J]. 材料导报, 2021, 35(8): 8146-8150.
[6] 朱云娜, 高利霞, 熊彤彤, 杜婵, 张士民, 陈必清. 化学镀工艺制备高耐腐蚀性能的Ni-Co-B-Pr复合镀层[J]. 材料导报, 2021, 35(4): 4159-4164.
[7] 翟建树, 李春燕, 田霖, 卢煜, 寇生中. Fe基非晶涂层耐腐蚀性能的影响因素及提升措施综述[J]. 材料导报, 2021, 35(3): 3129-3140.
[8] 朱坤森, 陶平均, 张超汉, 陈育淦, 张维建, 杨元政. Zr基块体非晶合金的成分设计及其性能研究[J]. 材料导报, 2021, 35(24): 24113-24116.
[9] 朱诚意, 鲍远凯, 汪勇, 马江华, 李光强. 新能源汽车驱动电机用无取向硅钢应用现状和性能调控研究进展[J]. 材料导报, 2021, 35(23): 23089-23096.
[10] 杨浩, 王成, 肖小波, 王晨, 陈俊锋, 汪炳叔, 张维林, 崔熙贵. 添加硼酸和钨酸铵对取向硅钢无铬绝缘涂层的影响[J]. 材料导报, 2021, 35(22): 22141-22145.
[11] 狄翀博, 王金华, 闫二虎, 王星粤, 陈运灿, 贾丽敏, 徐芬, 孙立贤. Nb-Ti-Co氢分离合金的显微组织和耐腐蚀性能[J]. 材料导报, 2021, 35(18): 18109-18115.
[12] 何春雨, 余伟, 程知松, 王铭阳, 唐荻. 高强耐蚀车体用钢热变形行为及本构方程的研究[J]. 材料导报, 2021, 35(18): 18153-18162.
[13] 曹明艳, 俞爱斌, 吴玉萍, 乔磊, 程杰. 氧化石墨烯/聚酯树脂涂层的制备及耐腐蚀性能[J]. 材料导报, 2021, 35(10): 10227-10231.
[14] 梁广, 朱胜, 王文宇, 王晓明, 韩国峰, 任智强. 铝合金腐蚀防护技术研究现状及发展趋势[J]. 材料导报, 2020, 34(Z2): 429-436.
[15] 梁惠东, 郑汉杰, 杨浩, 王晨, 陈俊锋, 汪炳叔. 氮添加量对块体纳米晶NdFeB永磁材料的影响[J]. 材料导报, 2020, 34(8): 8025-8030.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed