Please wait a minute...
材料导报  2021, Vol. 35 Issue (10): 10227-10231    https://doi.org/10.11896/cldb.20030152
  高分子与聚合物基复合材料 |
氧化石墨烯/聚酯树脂涂层的制备及耐腐蚀性能
曹明艳1, 俞爱斌2, 吴玉萍1, 乔磊1, 程杰1
1 河海大学力学与材料学院,南京 211100
2 安徽金达节能材料发展有限公司,淮北 235000
Preparation of GO/Polyester Resin Coatings and Its Corrosion Resistance
CAO Mingyan1, YU Aibin2, WU Yuping1, QIAO Lei1, CHENG Jie1
1 College of Mechanics and Materials, Hohai University, Nanjing 211100, China
2 Anhui Jinda Energy Saving Material Development Co. Ltd., Huaibei 235000, China
下载:  全 文 ( PDF ) ( 3659KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯具有阻隔性好、机械强度高、比表面积大等优异的性能,被广泛应用于防腐涂料领域。本研究在聚酯树脂粉末中加入分散性较好的氧化石墨烯(GO),利用静电喷涂技术在经硅烷偶联剂预处理的6063铝合金基体上制备了不同氧化石墨烯含量的聚酯体系涂层。通过EDS能谱分析硅烷膜的成分,并通过电化学试验评价硅烷膜的腐蚀行为;采用纳米压痕仪表征涂层与基体的结合力;通过全浸泡试验和中性盐雾试验研究氧化石墨烯添加量对聚酯体系涂层耐腐蚀性能的影响。结果表明,硅烷膜的自腐蚀电压为-0.831 V,自腐蚀电流密度为5.361×10-8 A/cm2,钛锆膜的自腐蚀电压为-0.967 V,自腐蚀电流密度为8.350×10-8 A/cm2,即与钛锆膜相比,硅烷膜的自腐蚀电位高、自腐蚀电流密度小,耐腐蚀性能更优;经硅烷偶联剂预处理涂层的临界载荷值LC1为2 035.71 mN,LC2为3 066.66 mN,均大于经钛锆膜预处理的涂层的临界载荷值(1 667.40 mN),即经硅烷偶联剂预处理的涂层与基体的结合力更强;与未添加氧化石墨烯的聚酯涂层相比,氧化石墨烯添加量为0.5%(质量分数)的聚酯涂层的失重量及失重率最小,1 000 h盐雾腐蚀后涂层表面的孔隙和腐蚀坑也均减少,其耐腐蚀性能明显增强。即在聚酯树脂涂料中添加0.5%(质量分数)氧化石墨烯时,涂层的耐腐蚀性能显著提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹明艳
俞爱斌
吴玉萍
乔磊
程杰
关键词:  硅烷偶联剂  氧化石墨烯  聚酯涂层  静电喷涂技术  耐腐蚀性    
Abstract: Graphene was widely used in the field of anticorrosive coatings because of its excellent properties such as good barrier property, high mechanical strength and large specific surface area. Graphene oxide with good dispersion was added into polyester resin powder and the po-lyester coating with different contents of GO was prepared on 6063 aluminum alloy substrate pretreated with silane coupling agent by electrostatic spraying technology. The composition of silane film was analyzed by EDS spectrum and corrosion resistance of silane membrane was evaluated by electrochemical experiments; nano-indentation test was used to characterize the adhesion between coating and substrate; the effect of GO on the corrosion resistance of polyester coating was studied by immersion test and neutral salt spray test. The results showed that the corrosion potential of silane film was -0.831 V, which was higher than that of Zr-Ti film (-0.967 V), and the corrosion current density of silane film was 5.361×10-8 A/cm2, which was lower than that of Zr-Ti film (8.350×10-8 A/cm2). Compared with the TiZr film, the silane film had higher self-corrosion potential, lower self-corrosion current density and better corrosion resistance. The critical load value LC1 and LC2 of the coating on the substrate surface pretreated with silane coupling agent were 2 035.71 mN and 3 066.66 mN, respectively, which were higher than those pretreated by Zr-Ti film (1 667.40 mN), and the adhesion between the coating and the substrate was stronger. Compared with the polyester coating without GO, the polyester coating with a mass fraction of 0.5% GO had the lowest weight loss and weight loss rate, and the surface of polyester coating showed fewer pores and corrosion pits after the 1 000 h salt spray experiment, so its corrosion resistance was evidently enhanced. Thus, the corrosion resistance of the coating was significantly improved when GO was added to the polyester resin coating with a mass fraction of 0.5%.
Key words:  silane coupling agent    grapheme oxide    polyester coating    electrostatic spraying technology    corrosion resistance
               出版日期:  2021-05-25      发布日期:  2021-06-04
ZTFLH:  TL214  
通讯作者:  wuyphhu@163.com   
作者简介:  曹明艳,于2018年9月进入河海大学攻读硕士学位,主要研究方向为氧化石墨烯/有机涂层的制备及耐腐蚀性能的研究。
吴玉萍,东南大学博士,河海大学力学与材料学院教授,博士研究生导师。主要从事金属材料及表面技术研究工作。在国内外期刊上发表论文80余篇,授权发明专利10余项。
引用本文:    
曹明艳, 俞爱斌, 吴玉萍, 乔磊, 程杰. 氧化石墨烯/聚酯树脂涂层的制备及耐腐蚀性能[J]. 材料导报, 2021, 35(10): 10227-10231.
CAO Mingyan, YU Aibin, WU Yuping, QIAO Lei, CHENG Jie. Preparation of GO/Polyester Resin Coatings and Its Corrosion Resistance. Materials Reports, 2021, 35(10): 10227-10231.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030152  或          http://www.mater-rep.com/CN/Y2021/V35/I10/10227
1 Yu Y G, Ou Y M, Shen G K, et al. Polyurethane Industry, 2018, 33(3), 1 (in Chinese).
于运歌, 欧耀明,沈国康,等. 聚氨酯工业,2018,33(3), 1.
2 Hayatgheib Y, Ramezanzadeh B, Kardar P, et al. Corrosion Science, 2018, 133, 358.
3 Cui M, Ren S, Chen J, et al. Applied Surface Science, 2017, 397, 77.
4 Pourhashem S, Vaezi M R, Rashidi A. Surface and Coatings Technology, 2017, 311(Complete), 282.
5 Yang L H, Wan Y X, Qin Z L, et al. Corrosion Science, 2018, 130, 85.
6 Yang N, Yang T, Wang W, et al. Journal of Hazardous Materials, 2019, 377, 142.
7 Zhou D H, Qu J E, Wang H R, et al. Materials Reports, 2016,30(32), 504 (in Chinese).
周东浩, 屈钧娥, 王海人, 等.材料导报, 2016,30(专辑28), 504.
8 Jiang F W, Zhao W J, Wu Y M, et al. Applied Surface Science, 2019, 479, 963.
9 Ramezanzadeh B, Niroumandrad S, Ahmadi A, et al. Corrosion Science, 2016,103, 283.
10 Wang J F, Lin L, He D N.Materials Reports, 2018, 32(S2), 111 (in Chinese).
王敬锋, 林琳, 何丹农.材料导报, 2018, 32(S2), 111.
11 He Q, Ma A B, Jiang J H, et al. Journal of Functional Materials, 2013, 44(S2), 176 (in Chinese).
何青,马爱斌,江静华,等.功能材料, 2013, 44(S2), 176.
12 Zhou C, Hong M, Yang Y, et al. Applied Surface Science, 2019, 484, 663.
13 Cui M J, Ren S M, Wang Y G, et al. Surface Technology, 2019, 48(6), 46 (in Chinese).
崔明君,任思明,王永刚,等.表面技术, 2019, 48(6), 46.
14 Zhang X R, Ma R, Du A, et al. Applied Surface Science, 2019, 484, 819.
15 Ramezanzadeh B, Ghasemi E, Mahdavian M, et al. Carbon, 2015, 93, 555.
16 Batan A, Mine N, Douhard B, et al. Chemical Physics Letters, 2010, 493, 107.
17 Arkles B.Chemtech, 1997,7, 766.
18 Zhang Y Q, Yang L X, Xie P B. Materials Protection, 2017, 50(12), 75 (in Chinese).
张焱琴, 杨丽霞, 谢鹏波.材料保护, 2017, 50(12), 75.
19 Wang L, Xuan T P, Zhou Y, et al.Electroplating & Pollution Control, 2012, 32(6), 9 (in Chinese).
汪亮, 宣天鹏, 周赟, 等.电镀与环保, 2012, 32(6), 9.
20 Nan R Z.Powder coating and coating technology, the third edition, Che-mical Industry Press, China, 2014, pp.214 (in Chinese).
南仁植.粉末涂料与涂装技术, 第三版, 化学工业出版社, 2014, pp.214.
21 Jiang L, Syed J A, Gao Y Z, et al. Applied Surface Science, 2018, 440, 1019.
22 Liu Q, Ma R N, Du A, et al. Applied Surface Science, 2019,480, 651.
23 Cao C N. Electrochemical principles of corrosion (3rd edition), Chemical Industry Press, China, 2008 (in Chinese).
曹楚南. 腐蚀电化学原理(第三版),化学工业出版社, 2008.
24 Beake B D, Vishnyakov V M, Harris A J. Surface and Coatings Technology, 2017, 309, 673.
25 Wang X X, Fu H L, Jiang M Y, et al. Journal of Coatings Technology and Research, 2019, 16(4), 975.
26 Xing T J, Ying L X, Wu C X, et, al.Anti-Corrosion Methods and Mate-rials, 2019, 66(4), 449.
27 Ding J H, Zhao H Y, Zheng Y,et al. Carbon, 2018, 138, 203.
28 Zhong F, He Y, Wang P Q, et al. Applied Surface Science, 2019, 488, 809.
29 Liu S, Gu L, Zhao H C, et al. Journal of Materials Science and Technology, 2016, 32, 429.
30 Cui M J, Ren S M, Zhao H C, et al.Chemical Engineering Journal, 2018, 335, 263.
[1] 封帆, 王美玲, 李振华, 陆永浩. 超超临界机组用HR3C奥氏体耐热钢研究进展[J]. 材料导报, 2021, 35(9): 9186-9195.
[2] 孙晓玲, 弓巧娟, 梁云霞, 巩鹏妮. 新型薄层氮化碳/氧化石墨烯复合材料的制备及在锌-空气电池中的应用[J]. 材料导报, 2021, 35(8): 8001-8006.
[3] 李强, 赵特, 魏磊山, 陈明华, 孙旭东. Cu含量对生物可降解Zn-Cu合金组织和性能的影响[J]. 材料导报, 2021, 35(8): 8088-8092.
[4] 肖奇, 孙文磊, 刘金朵, 黄海博. Ni60A/WC激光熔覆涂层表面抗蚀行为[J]. 材料导报, 2021, 35(8): 8146-8150.
[5] 索鑫磊, 刘艳, 张立来, 苏杭, 李婉, 李国龙. 基于氧化石墨烯空穴传输层的平面异质结钙钛矿太阳能电池[J]. 材料导报, 2021, 35(6): 6015-6019.
[6] 朱云娜, 高利霞, 熊彤彤, 杜婵, 张士民, 陈必清. 化学镀工艺制备高耐腐蚀性能的Ni-Co-B-Pr复合镀层[J]. 材料导报, 2021, 35(4): 4159-4164.
[7] 翟建树, 李春燕, 田霖, 卢煜, 寇生中. Fe基非晶涂层耐腐蚀性能的影响因素及提升措施综述[J]. 材料导报, 2021, 35(3): 3129-3140.
[8] 李锐超, 桂泰江, 丛巍巍, 张盾, 郭丽莎, 王鹏. 含氟硅烷偶联剂低聚物的合成及性能表征[J]. 材料导报, 2021, 35(2): 2199-2206.
[9] 魏致强, 王远贵, 齐孟, 郑旭煦, 袁小亚. 没食子酸协同聚羧酸减水剂分散氧化石墨烯及其对水泥砂浆性能的影响[J]. 材料导报, 2021, 35(10): 10042-10047.
[10] 梁广, 朱胜, 王文宇, 王晓明, 韩国峰, 任智强. 铝合金腐蚀防护技术研究现状及发展趋势[J]. 材料导报, 2020, 34(Z2): 429-436.
[11] 他进国, 黄一凡, 甄小娟. 500 keV质子辐照对氧化石墨烯薄膜材料的影响研究[J]. 材料导报, 2020, 34(Z1): 39-42.
[12] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[13] 梁惠东, 郑汉杰, 杨浩, 王晨, 陈俊锋, 汪炳叔. 氮添加量对块体纳米晶NdFeB永磁材料的影响[J]. 材料导报, 2020, 34(8): 8025-8030.
[14] 刘宇程, 祝梦, 陈明燕, 涂雯雯, 甘冬. 氧化石墨烯/金属有机框架材料复合膜在有机废水处理中的研究进展[J]. 材料导报, 2020, 34(7): 7003-7009.
[15] 马潇磊, 张成成, 张朝磊, 马晓艺, 赵海东, 方文. 基于“混杂”设计的索氏体新型不锈钢的组织和性能[J]. 材料导报, 2020, 34(4): 4103-4107.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed