Please wait a minute...
材料导报  2021, Vol. 35 Issue (10): 10221-10226    https://doi.org/10.11896/cldb.20040043
  高分子与聚合物基复合材料 |
基于互穿交联结构的PVA-硅酸钠杂化改性杨木的制备与性能
邓雨希, 关鹏飞, 左迎峰, 吴义强, 袁光明, 李贤军
中南林业科技大学材料科学与工程学院,长沙 410004
Preparation and Properties of PVA-Sodium Silicate Hybrid Modified Poplar with Interpenetrating and Cross-linking Structure
DENG Yuxi, GUAN Pengfei, ZUO Yingfeng, WU Yiqiang, YUAN Guangming, LI Xianjun
College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
下载:  全 文 ( PDF ) ( 3847KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高无机硅酸钠浸渍改性杨木的性能,使用有机-无机杂化的方法对速生杨木进行了改性。以聚乙烯醇(PVA)为有机改性剂,硅酸钠为无机改性剂,采用分步真空-加压原位浸渍的方法制备PVA-硅酸钠杂化改性杨木。对比了杨木素材、硅酸钠改性杨木和PVA-硅酸钠杂化改性杨木的增重率、密度增大率、力学强度和阻燃抑烟性能,并采用傅里叶变换红外光谱(FT-IR)和X射线衍射仪(XRD)对化学结构和结晶结构进行了表征。结果表明,与硅酸钠浸渍改性杨木相比,PVA-硅酸钠杂化改性杨木的增重率提高了7.9%,密度增大率提高了12.3%。PVA-硅酸钠杂化改性杨木的硬度、抗弯强度、抗压强度和冲击韧性都显著提高。FT-IR分析表明,PVA和硅酸钠发生化学反应形成互穿交联结构,并与杨木中的羰基、羟基形成Si-O-C键和氢键缔合,解释了改性杨木力学性能提高的原因。XRD分析表明,PVA和硅酸钠的浸入明显降低了杨木的结晶度,这也是改性杨木冲击韧性提高的原因。PVA-硅酸钠杂化改性杨木的阻燃性能与硅酸钠浸渍改性杨木接近,但抑烟效果显著提高。PVA-硅酸钠杂化改性杨木的平均热释放速率为57.63 kW/m2,较杨木素材降低了28.93%;PVA-硅酸钠杂化改性杨木的总生烟量为1.255 m2,较杨木素材和硅酸钠浸渍改性杨木分别降低了40.3%和31.5%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓雨希
关鹏飞
左迎峰
吴义强
袁光明
李贤军
关键词:  杨木  硅酸钠  PVA  杂化改性  互穿交联结构    
Abstract: In order to improve the properties of poplar impregnated inorganic sodium silicate, the fast-growing poplar was modified by organic-inorganic hybrid method. Using polyvinyl alcohol (PVA) as organic modifier and sodium silicate as inorganic modifier, PVA-sodium silicate hybrid mo-dified poplar wood was prepared by step vacuum pressure in-situ impregnation. The weight percentage gain, density increase ratio, mechanical strength, flame retardant and smoke suppressive performance of unmodified poplar, sodium silicate modified poplar and PVA-sodium silicate hybrid modified poplar were compared. The chemical structure and crystal structure were characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The results showed that the weight gain rate of PVA-sodium silicate hybrid modified poplar increased by 7.9% and the density increase rate increased by 12.3%. The hardness, blending strength, compressive strength and impact toughness of poplar modified by PVA-sodium silicate hybrid were all significantly improved. FT-IR analysis showed that PVA reacted with sodium silicate to form interpenetrating cross-linking structure, and form Si-O-C bond and hydrogen bond association with carbonyl and hydroxyl in poplar, which explained the reason for the improvement of mechanical properties of modified poplar. XRD analysis shows that the immersion of PVA and sodium silicate significantly reduces the crystallinity of poplar, which is also the reason for the improvement of impact toughness of modified poplar. The flame resistance of PVA-sodium silicate hybrid modified poplar was similar to that of sodium silicate impregnated modified poplar, but the smoke suppression effect was significantly improved. The average heat release rate of poplar modified by sodium silicate was 57.63 kW/m2, which was 28.93% lower than that of poplar material; the total smoke production of poplar modified by PVA-sodium silicate hybrid was 1.255 m2, which was 40.3% and 31.5% lower than that of poplar material and sodium silicate impregnated poplar, respectively.
Key words:  poplar    sodium silicate    PVA    hybrid modification    interpenetrating and cross-linking structure
               出版日期:  2021-05-25      发布日期:  2021-06-04
ZTFLH:  S781.7  
基金资助: 湖湘青年英才计划(2019RS2040);国家自然科学基金面上项目(31770606);湖南省科技重大专项(2017NK1010)
通讯作者:  zuoyf1986@163.com   
作者简介:  邓雨希,中南林业科技大学硕士研究生。2018年毕业于中南林业科技大学,获得工学学士学位。主要从事木材功能性改良的研究。
左迎峰,中南林业科技大学副教授。2014年毕业于东北林业大学,获工学博士学位。同年加入中南林业科技大学材料科学与工程学院,主要从事生物质复合材料及胶黏剂改性的研究。
李贤军,中南林业科技大学,教授/博士研究生导师。2005年毕业于北京林业大学,获工学博士学位。同年加入中南林业科技大学材料科学与工程学院,主要从事木材干燥和性能改良的研究。
引用本文:    
邓雨希, 关鹏飞, 左迎峰, 吴义强, 袁光明, 李贤军. 基于互穿交联结构的PVA-硅酸钠杂化改性杨木的制备与性能[J]. 材料导报, 2021, 35(10): 10221-10226.
DENG Yuxi, GUAN Pengfei, ZUO Yingfeng, WU Yiqiang, YUAN Guangming, LI Xianjun. Preparation and Properties of PVA-Sodium Silicate Hybrid Modified Poplar with Interpenetrating and Cross-linking Structure. Materials Reports, 2021, 35(10): 10221-10226.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040043  或          http://www.mater-rep.com/CN/Y2021/V35/I10/10221
1 Wang X Z. Green China, 2019 (12), 54(in Chinese).
王兮之. 绿色中国, 2019 (12), 54.
2 Lang J K. Study on flexural properties of bamboo-timber composite beams. Master's Thesis, Central South University of Forestry and Technology, China, 2019 (in Chinese).
郎健珂. 竹-木组合梁受弯性能研究. 硕士学位论文, 中南林业科技大学, 2019.
3 Lao W L, Zhang R, Duan X F, et al. Forestry Machinery & Woodworking Equipment, 2019, 47(11), 4(in Chinese).
劳万里, 张冉, 段新芳, 等. 林业机械与木工设备, 2019, 47(11), 4.
4 Zhao J, Zheng Z L, Guo B, et al.World Forestry Research, 2020,33(1), 14(in Chinese).
赵娟, 郑智礼, 郭斌, 等. 世界林业研究, 2020, 33(1), 14.
5 Guo X, Lin Y, Na B, et al.BioResources, 2017, 12(1), 43.
6 Zhang S J. Application of fast-growth wood in light wood frame construction. Master's Thesis, Nanjing Forestry University, China, 2017(in Chinese).
张苏俊. 国产速生材在轻质木结构中的应用研究.硕士学位论文, 南京林业大学, 2017.
7 Chen H, Lang Q, Bi Z, et al.Holzforschung, 2014, 68(1), 45.
8 Li P, Zhang Y, Zuo Y, et al.Journal of Materials Research and Technology, 2020, 9(1), 1043.
9 Shi Y, Liu J L, Lv W H, et al.China Wood Industry, 2019, 33(1), 21(in Chinese).
石媛, 刘君良, 吕文华, 等. 木材工业, 2019, 33(1), 21.
10 Tang S, Zou P, Xiong H, et al.Carbohydrate Polymers, 2008, 72(3), 521.
11 Park H K, Kong B S, Oh E S.Electrochemistry Communications, 2011, 13(10), 1051.
12 Zhang X L, Wu Y Q, Hu Y C, et al.Journal of Central South University of Forestry and Technology, 2012, 32(1), 104(in Chinese).
张新荔, 吴义强, 胡云楚, 等.中南林业科技大学学报, 2012, 32(1), 104.
13 Jatoi A W, Ogasawara H, Kim I S, et al. Materials Letters, 2019, 241(15), 168.
14 Ji Y, Zhang H, Zhang C, et al. Polymers, 2019, 11(9), 1476.
15 Dong X Y, Zhou X, Wei J,et al. ACS Applied Materials & Interfaces, 2017, 9(10), 9070.
16 Huang Y, Li G, Chu F. Holzforschung, 2019, 73(5), 469.
17 Alexandre M, Dubois P. Materials Science and Engineering, 2000, 28(1-2), 1.
18 Jiang J, Cao J, Wang W. Holzforschung, 2018, 72(4), 311.
19 Liu X, Wu Y, Zhang X, et al.BioResources, 2015, 10(1), 1528.
20 Toba K, Yamamoto H, Yoshida M.Cellulose, 2013, 20(2), 633.
21 Grexa O, Lubke H.Polymer Degradation and Stability, 2001, 74(3), 427.
22 Yuan L, Chen X, Hu Y. Journal of Fire Sciences, 2014, 32(3), 230.
[1] 周亚, 李萍, 张 源, 袁光明, 王向军, 吴义强, 左迎峰. 基于呼吸浸渍法硅酸钠强化杉木木材工艺优化[J]. 材料导报, 2020, 34(18): 18171-18176.
[2] 朱逸军, 刘子同, 袁久刚, 王强, 王平. 以巯基乙酸胆碱为共溶剂的角蛋白/PVA复合膜的一浴法制备及性能[J]. 材料导报, 2020, 34(14): 14187-14190.
[3] 王胜涛, 卢维尔, 王桐, 夏洋. PMMA/PVA双支撑膜辅助铜刻蚀法:一种改进的石墨烯转移技术[J]. 材料导报, 2019, 33(2): 230-233.
[4] 董雨菲, 马建中, 刘超, 鲍艳, 林阳, 吴英柯. SiO2的功能化改性及其与聚合物基体的界面研究进展[J]. 材料导报, 2019, 33(11): 1910-1918.
[5] 刘鑫, 杨鼎宜, 刘廉, 吕锦飞. 热-力耦合作用下PVA纤维混凝土力学性能及其声发射响应[J]. 材料导报, 2018, 32(18): 3135-3141.
[6] 祝和意, 张少峰. PVA纤维体积率对PVA-ECC力学性能的影响[J]. 材料导报, 2018, 32(18): 3266-3270.
[7] 武文红, 牛恒茂, 赵燕茹, 邢永明. 基于图像处理的纤维分布与取向分布对水泥基材料弯曲性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 140-146.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed