Please wait a minute...
材料导报  2020, Vol. 34 Issue (18): 18171-18176    https://doi.org/10.11896/cldb.19090068
  高分子与聚合物基复合材料 |
基于呼吸浸渍法硅酸钠强化杉木木材工艺优化
周亚1, 李萍1, 张 源1, 袁光明1, 王向军2, 吴义强1, 左迎峰1
1 中南林业科技大学材料科学与工程学院,长沙 410004
2 天盈(广东)木业科技有限公司,江门 529700
Process Optimization of Sodium Silicate Reinforced Chinese Fir Wood Based on Respiratory Impregnation
ZHOU Ya1, LI Ping1, ZHANG Yuan1, YUAN Guangming1, WANG Xiangjun2, WU Yiqiang1, ZUO Yingfeng1
1 College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
2 Tianying (Guangdong) Wood Industry Technology Limited Company, Jiangmen 529700, China
下载:  全 文 ( PDF ) ( 2043KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 以杉木为改性基材、硅酸钠为浸渍改性剂,通过对木材交替施加“负压-正压”使其内部产生“呼液-吸液”的作用,从而改善木材的渗透性,并提高改性剂在木材中的浸注量以及浸渍效率。以硅酸钠的模数、浓度和浸渍时间作为试验因素,采用正交实验法优选出硅酸钠浸渍杉木的最佳工艺条件。研究结果表明,在硅酸钠改性剂的模数为3.4、浓度为30%、浸渍时间为1 h时,杉木木材的浸渍效果最佳。对最优条件的改性材进行FTIR、XRD、TGA分析表征。结果发现,杉木改性材的游离羟基数量减少,缔合羟基数量增加,出现Si-O-Si的特征吸收峰,说明硅酸钠对杉木的改性不只是物理填充,还存在化学键的结合;由于硅酸钠的润胀作用和化学键的形成,改性杉木的结晶度降低;杉木改性材的热稳定性提高,起始分解温度降低,在炭化阶段的质量损失显著减少,最终的残留质量增加。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周亚
李萍
张 源
袁光明
王向军
吴义强
左迎峰
关键词:  杉木  硅酸钠  呼吸浸渍法  工艺优化  强化  尺寸稳定化    
Abstract: Usingthe Chinese fir wood as the modified base material and sodium silicate as the impregnation modifier, alternately applying “negative pressure-positive pressure” to the wood to produce the form of “outlet-liquid inlet”, thereby improving the permeability of the wood as well as increasing the amount and efficiency of the modifier in the wood. Taking the modulus, concentration and immersion time of sodium silicate as test factors, the optimum conditions for soaking Chinese fir wood with sodium silicate were optimized by orthogonal experiment. The results showed that when the modulus of sodium silicate modifier was 3.4, the concentration was 30%, and the immersion time was 1 h, the wood impregnation effect was the best, the modified materials were characterized by FTIR, XRD and TGA analysis. The results showed that the number of free hydroxyl groups in the modified material of Chinese fir decreased, the number of associated hydroxyl groups increased, and the characteristic absorption peak of Si-O-Si appeared. The modification of Chinese fir by sodium silicate was not only physical filling, but also chemical bond combination. Because of the swelling effect of sodium silicate and the formation of chemical bonds, the crystallinity of modified Chinese fir decreased. The thermal stability of the modified fir material increased, the initial decomposition temperature became lower, the mass loss in the carbonization stage was significantly reduced, and the final residual mass increased.
Key words:  Chinese fir wood    sodium silicate    respiratory impregnation method    process optimization    strengthen    dimensional stability
               出版日期:  2020-09-25      发布日期:  2020-09-12
ZTFLH:  S781.7  
基金资助: 湖南省科技重大专项(2017NK1010);湖湘青年英才计划(2019RS2040);生物质材料科学与技术教育部重点实验室(东北林业大 学)开放基金(SWZ-MS201917);湖南省研究生科研创新项目(CX20190600);中南林业科技大学研究生科研创新项目(CX20191010;CX20192003)
通讯作者:  zuoyf1986@163.com   
作者简介:  周亚,中南林业科技大学,硕士研究生。2018年毕业于中南林业科技大学,获得工学学士学位。主要从事木材功能性改良。
左迎峰,中南林业科技大学,副教授。2014年毕业于东北林业大学,获工学博士学位。同年加入中南林业科技大学材料科学与工程学院工作,主要从事生物质复合材料及胶黏剂改性研究。
引用本文:    
周亚, 李萍, 张 源, 袁光明, 王向军, 吴义强, 左迎峰. 基于呼吸浸渍法硅酸钠强化杉木木材工艺优化[J]. 材料导报, 2020, 34(18): 18171-18176.
ZHOU Ya, LI Ping, ZHANG Yuan, YUAN Guangming, WANG Xiangjun, WU Yiqiang, ZUO Yingfeng. Process Optimization of Sodium Silicate Reinforced Chinese Fir Wood Based on Respiratory Impregnation. Materials Reports, 2020, 34(18): 18171-18176.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090068  或          http://www.mater-rep.com/CN/Y2020/V34/I18/18171
1 Yao M, Yang Y, Song J, et al. Industrial Crops and Products, 2017, 107, 38.
2 Li P, Zuo Y F, Wu Y Q, et al. Journal of Forestry Engineering, 2016, 1(5), 133(in Chinese).
李萍, 左迎峰, 吴义强, 等. 林业工程学报, 2016, 1(5),133.
3 Sun H, Yan J R, Wu Y H, et al. Spectroscopy and Spectral Analysis, 2020, 40(1), 184(in Chinese).
孙海, 燕贾茹, 吴艳华, 等. 光谱学与光谱分析, 2020, 40(1),184.
4 Yue K, Chen Z, Lu W, et al. Construction and Building Materials, 2017, 15(154),956.
5 Dong Y M, Zhang S F, Li J Z. Journal of Forestry Engineering, 2017, 2(4),34(in Chinese).
董友明, 张世锋, 李建章. 林业工程学报, 2017, 2(4),34.
6 Huang Y, Fei B, Yu Y, et al. Bioresources, 2012, 8(1),272.
7 He G, Riedl B, Ait-Kadi A. Journal of Applied Polymer Science, 2003, 89(5),1371.
8 Lu J, Lin Z, Jiang J, et al. Journal of Forestry Research, 2005, 16(4), 293.
9 Bao F C, Lyu J X. Scientia Silvae Sinicae, 1992, 28(4), 336(in Chinese).
鲍甫成, 吕建雄. 林业科学, 1992, 28(4),336.
10 Bao F C, Lyu J X. Scientia Silvae Sinicae, 1992, 28(3), 237(in Chinese).
鲍甫成, 吕建雄. 林业科学, 1992, 28(3),237.
11 Wang X G, Jin W J, Deng Y H, et al. Journal of Southwest Forestry University, 2014,34(3), 84(in Chinese).
王向歌, 金菊婉, 邓玉和, 等. 西南林业大学学报, 2014,34(3), 84.
12 Wang F, Liu J, Lv W. Fire and Materials, 2017, 41(8), 1051.
13 He S, Lin L, Fu F, et al. Bioresources, 2014, 9(2), 1924.
14 Alexandre M, Dubois P. Materials Science and Engineering: Reports, 2000, 28(1-2), 1.
15 Li J. Wood science, Science Press, China, 2014(in Chinese).
李坚. 木材科学, 科学出版社, 2014.
16 Lu Y, Feng M, Zhao H, et al. Cellulose, 2014, 21(6), 4393.
17 Toba K, Yamamoto H, Yoshida M. Cellulose, 2013, 20(2), 633.
18 Lin M S, Jiang J C. Acta Energiae Solaris Sinica, 2008, 29(9), 1135(in Chinese).
林木森, 蒋剑春. 太阳能学报, 2008, 29(9), 1135.
[1] 张洋, 张海燕, 陈蕴博, 王大鹏, 陈林, 刘晓萍. 热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响[J]. 材料导报, 2020, 34(Z1): 356-360.
[2] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[3] 蒋三生, 梁立帅, 舒凤远. 45钢表面激光熔覆Co基合金覆层工艺优化[J]. 材料导报, 2020, 34(Z1): 448-451.
[4] 谢锐, 吕铮, 卢晨阳, 王晴, 徐世海, 刘春明. 热等静压温度对14Cr-ODS钢显微组织及力学性能的影响[J]. 材料导报, 2020, 34(8): 8141-8148.
[5] 徐枫, 严红革, 陈吉华, 张正富, 范长岭. 原料对强化固相反应合成的LiNi1/3Co1/3Mn1/3O2粉末电化学性能的影响[J]. 材料导报, 2020, 34(6): 6039-6043.
[6] 李振团, 柴锋, 罗小兵, 张正延, 杨才福, 苏航. 时效温度对Cu沉淀强化超高强海工钢力学性能的影响[J]. 材料导报, 2020, 34(6): 6132-6137.
[7] 陈灵芝, 周张健, CarstenSchroer. 铅冷能源系统中液态金属与铁基合金相容性的研究进展[J]. 材料导报, 2020, 34(5): 5096-5101.
[8] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[9] 马启慧,王清,董闯. Co-Al-W基高温合金发展概述[J]. 材料导报, 2020, 34(3): 3157-3164.
[10] 黄章, 杜传治, 方金林, 于浩, 黎淑英, 宋成浩, 段晓妮. Nb微合金化对Q500MPa级热轧H型钢组织和性能的影响[J]. 材料导报, 2020, 34(14): 14175-14180.
[11] 卢勇, 冯辉霞. 转化膜致密化及耐蚀性能提升工艺优化进展[J]. 材料导报, 2020, 34(13): 13160-13166.
[12] 蔡祥, 乔岩欣, 许道奎, 李传强, 杨兰兰, 周慧玲. 镁锂合金强化行为研究进展[J]. 材料导报, 2019, 33(Z2): 374-379.
[13] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[14] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[15] 姜楠, 张亮, 熊明月, 赵猛, 徐恺恺. 电子封装无铅软钎焊技术研究进展[J]. 材料导报, 2019, 33(23): 3862-3875.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed