Please wait a minute...
材料导报  2020, Vol. 34 Issue (13): 13160-13166    https://doi.org/10.11896/cldb.19030005
  金属与金属基复合材料 |
转化膜致密化及耐蚀性能提升工艺优化进展
卢勇1,2, 冯辉霞1
1 兰州理工大学石油化工学院,兰州 730050
2 中国石油兰州石化公司研究院,兰州 730060
An Overview on Process Optimization of Densification and Corrosion Resistance Enhancement of Conversion Coatings
LU Yong1,2, FENG Huixia1
1 School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 Research Institute of Lanzhou Petrochemical Corporation of Petrochina, Lanzhou 730060, China
下载:  全 文 ( PDF ) ( 3022KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 化学转化膜技术是金属物件表面处理过程中应用广泛的一项技术。转化膜对金属基底有较好的防护作用,但在成膜过程中,因微阴极区域存在剧烈的析氢反应,以及在成膜结束干燥过程中失水导致转化膜收缩,使得所形成的转化膜结构疏松,膜层裂纹增多。裂纹破坏了转化膜层的紧密度,为腐蚀性介质提供了有效的通道,严重削弱了膜层的保护作用。
本文首先介绍了各类环保、无铬的化学转化膜及其制备技术,并分析了转化膜存在微裂纹的原因。针对转化膜表面有微裂纹和耐蚀性不佳的缺点,技术人员通过多种技术来改进所得膜层的连续性和耐蚀性。目前,对于降低转化膜开裂程度方面的研究主要集中在向转化液中添加不同添加剂、采用后处理手段密封孔道等。
本文重点阐述了转化膜膜层致密化及提升其耐蚀性能的工艺优化进展,着重分析了转化膜制备过程中添加不同添加剂和进行后处理的工艺技术。可使转化膜致密的添加剂有金属离子、纳米粒子、成膜促进剂和表面活性剂。而在转化膜制备过程中,向转化液中添加不同的添加剂,其对所形成的转化膜的致密机理不同,致密程度也有一定的差异,但工艺相对简单。当对制备的转化膜进行后处理时,主要用磷酸二氢盐、溶胶-凝胶、不同于基膜的成膜材料和热处理技术等,各种后处理技术也能提升转化膜层对金属基底的保护效率。本文总结归纳了提到的各种工艺的优缺点、致密化原理及所制备的膜层对基底的防腐蚀保护效果。在文献归纳的基础上,还对转化膜技术在金属表面转化处理的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢勇
冯辉霞
关键词:  转化膜  致密性  耐蚀性  工艺优化    
Abstract: Chemical conversion coating technology is widely applied in the metal surface treatment which has a good protective effect for the metal anti-corrosion.However, during the coating formation process, the coating shrinks due to the severe hydrogen evolution reaction in the micro-cathode area and the loss of water during the drying process at the end of the coating formation, resulting in loose structure of the formed conversion coating and increased cracking of the coating layer.Crack damages the tightness of the coating,provides an efficient channel for corrosive medium and seriously weakens the protective effect of coating.
This paper first introduces various environmentally friendly, chromium-free chemical conversion coatings and their preparation techniques, and analyzes the causes of micro-cracks in the conversion coating. In view of the defects of micro-cracks and poor corrosion resistance of various conversion coatings,researchers improved the continuity and corrosion resistance of the obtained conversion coating through various technologies.At present, the research on reducing the degree of cracking of the conversion coating mainly focuses on the following aspects,adding diffe-rent additives to the conversion solution, and adopting post-treatment means to seal the pores and the like.
This paper focuses on the process optimization progress of the densification and corrosion resistance improvement of the conversion coating and focuses on the analysis of the process technology of adding different additives and post-treatment in the preparation process of the conversion coating. Additives that can be used for densification include metal ions, nano-particles, film-forming accelerators, and surfactants. In the preparation process of the conversion coating, different additives are added to the conversion solution, different additives have different densification mechanisms for the formed conversion coating and the degree of compactness also has a certain difference. Only different additives are added to the conversion solution and the process is relatively simple.However, when post-treatment of the prepared conversion coating is carried out,it is mainly using dihydric phosphate,sol-gel,film-forming materials different from the substrate coating and heat treatment technology.Various post-treatment technologies can also improve the protection efficiency of the coating.The advantages and disadvantages of the various processes mentioned above, the mechnism of densification and the anti-corrosion protection effect of the prepared coating on the substrate are summarized in detail. On the basis of literature summarization, the development direction of conversion coating technology on metal surface treatment is also prospected.
Key words:  conversion coating    densification    corrosion resistance    process optimization
                    发布日期:  2020-06-24
ZTFLH:  TG179  
基金资助: 国家科技部“科技人员服务企业行动项目”(2009GJG10041);甘肃省高校基本科研业务费(1105ZTC136)
通讯作者:  fenghx66@163.com   
作者简介:  卢勇,2011年6月毕业于兰州理工大学,获得工学硕士学位。现为兰州理工大学石油化工学院博士研究生,在冯辉霞教授的指导下进行研究。目前主要从事功能材料在防腐蚀领域的应用研究。
冯辉霞,兰州理工大学石油化工学院教授,博士研究生导师。1987年兰州大学化学系无机化学专业本科毕业。2006年毕业于兰州理工大学材料加工工程专业,获工学博士学位。2005年至2006年在日本秋田县立大学做访问研修。先后两次入选甘肃省领军人才,现为中国化学会会员,甘肃省科技普及学会理事,兰州理工大学教学指导委员会委员,担任国家自然科学基金项目评议专家。主要从事功能复合材料研究及应用。近年来,在功能材料领域发表论文100多篇,包括RSC Advances、Advanced Materials、Journal of Power Sources、Journal of Magnetism and Magnetic Materials。共主编、副主编两部专著,主编教材四部。
引用本文:    
卢勇, 冯辉霞. 转化膜致密化及耐蚀性能提升工艺优化进展[J]. 材料导报, 2020, 34(13): 13160-13166.
LU Yong, FENG Huixia. An Overview on Process Optimization of Densification and Corrosion Resistance Enhancement of Conversion Coatings. Materials Reports, 2020, 34(13): 13160-13166.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030005  或          http://www.mater-rep.com/CN/Y2020/V34/I13/13160
1 Renner F U, Stierle A, Dosch H, et al. Nature, 2006, 439 (7077), 707.
2 Lu Y, Feng H X, Kong P P. Journal of Materials Engineering, 2018, 46(8), 27(in Chinese).
卢勇, 冯辉霞, 孔佩佩.材料工程, 2018, 46(8), 27.
3 Xhanari K, Finsgar M, Hrnci M K, et al. RSC Advances, 2017, 7(44), 27299.
4 Khun N W, Frankel G S. Corrosion Science, 2015, 71, 277.
5 Debnath N C. Journal of Surface Engineered Materials &Advanced Technology, 2013, 3(1), 94.
6 Ramezanzadeh B, Attar M M. Surface & Coatings Technology, 2011, 205(19), 4649.
7 Gao H F, Tan H Q, Li J, et al. Surface Engineering, 2012, 28(5), 387.
8 Zhang S, Li Q, Chen B, et al. Electrochimica Acta, 2010, 55(3), 870.
9 Hosseini R M, Sababi A A, Mohammadloo H E, et al. Surface & Coa-tings Technology, 2014, 258, 437.
10 Cerezo J, Vandandael I, Posner R, et al. Applied Surface Science, 2016, 366, 339.
11 Winiarskj J, Masalskj J, Szczygiel B. Surface & Coatings Technology, 2013, 236 (24), 252.
12 Motamedi M, Attar M M. RSC Advances, 2016, 6(50), 44732.
13 Yang L H, Li J Q, Yu X, et al. The Chinese Journal of Nonferrous Me-tals, 2008, 18(7), 1211(in Chinese).
杨黎晖, 李峻青, 于湘, 等.中国有色金属学报, 2008, 18(7), 1211.
14 Liu X, Zhang T, Shou Y, et al. Corrosion Science, 2010, 52(3), 892.
15 Ardelean H, Frateru I, Marcus P. Corrosion Science, 2008, 50(7), 1907.
16 Yang L, Li J, Yu X, et al. Applied Surface Science, 2008, 255 (5), 2338.
17 Li L L, Yang Y Y, Cui X F, et al. China Surface Engineering, 2013, 26 (1), 51(in Chinese).
李玲莉, 杨雨云, 崔秀芳, 等.中国表面工程, 2013, 26(1), 51.
18 Zhao D Z, Zhang D F, Liu Y P, et al. Rare metal Materials and Engineering, 2017, 46(2), 289.
19 Zou M H, Li L J, Lei J L, et al. Journal of the Chinese Rare Earth Society, 2009, 27(3), 375(in Chinese).
邹茂华, 李凌杰, 雷惊雷, 等.中国稀土学报, 2009, 27(3), 375.
20 Han B J, Gu D D, Yang Y, et al. International Journal of Electrochemical Science, 2017, 12(1), 374.
21 Elsentriecy H H, Azumi K, Konno H. Electrochimica Acta, 2008, 53(12), 4267.
22 Kong G, Wu S, Lin D X. et al. The Chinese Journal of Nonferrous Metals, 2012, 22(5), 1390(in Chinese).
孔纲, 吴双, 林德鑫, 等.中国有色金属学报, 2012, 22(5), 1390.
23 Zhang M, Cai S, Zhang F, et al. Journal of Materials Science. Materials in Medicine, 2017, 28(6), 82.
24 Li F, Wang G. Journal of Materials Engineering & Performance, 2016, 25(5), 1864.
25 Tai C Y, Liu J S, Chen P L, et al. Corrosion Science.2010, 52(12), 3907.
26 Rezaee N, Attar M M, Ramezanzadeh B. Surface & Coatings Technology, 2013, 236(24), 361.
27 Zimmermann D, Munoz A G, Schultza J W. Electrochimica Acta, 2003, 48(20), 3267.
28 Ramezanzadeh B, Attar M M, Farzam M. Surface & Coatings Technology, 2010, 205(3), 874.
29 Akhtar A S, Susac D, Glaze P, et al. Surface & Coatings Technology, 2004, 187(2), 208.
30 Su H Y, Lin C S. Corrosion Science, 2014, 83(7), 137.
31 Liu F, Shan D Y, Han E H, et al. Chinese Journal of Nonferrous Metals, 2008, 18(10), 1825.
32 Bancezek E P, Rodrigues P R P, Costa I. Surface & Coatings Technology, 2008, 202(10), 2008.
33 Gao X, Li W, Yan R, et al. Surface & Coatings Technology, 2017, 325, 248.
34 Sandu A V, Ciomaga A, Nemtoi G, et al. Journal of Optoelectronics & Advanced Materials, 2013, 14(7-8), 704.
35 Sun X, Susac D, Li R, et al. Surface & Coatings Technology, 2002, 155(1), 46.
36 Yan R, Gao X, He W, et al. RSC Advances, 2017, 7(65), 41152.
37 Liu Y, Bian D, Zhao Y, et al. Journal of The Mechanical Behavior of Biomedical Materials, 2018, 86, 208.
38 Tamilselvi M, Kamaraj P, Arthanareeswari M, et al. Applied Surface Science, 2015, 332(s13-14), 12.
39 Zhao M, Li J, He G, et al. Journal of the Electrochemical Society, 2013, 160(11), C553.
40 Montemor M F, Pinto R, Ferreiram G S. Electrochimica Acta, 2009, 54(22), 5179.
41 Tamilselvi M, Kamaraj P, Arthanareeswari M, et al. Applied Surface Science, 2015, 327(327), 218.
42 Zuo K, Wang X, Liu W, et al. Transactions of Nonferrous Metals Society of China.2014, 24(5), 1474.
43 Jiang C C, Cao Y K, Xiao G Y, et al. RSC Advance, 2017, 7(13), 7531.
44 Ashassi-sorkhabi H, Eshaghi M. Corrosion Science, 2013, 77(12), 185.
45 Amini R, Vakili H, Ramazanzadeh B. Journal of the Taiwan Institute of Chemical Engineers, 2016, 58, 542.
46 Kalaivani R, Thillaiarasu P, Rajendarn S. European Chemical Bulletin,2014, 3(4), 407.
47 Ramezanzadeh B, Vakili H, Amini R. Applied Surface Science, 2015, 327, 174.
48 Saei E, Rzmezanzadeh B, Amini R, et al. Corrosion Science, 2017, 127, 1.
49 Kong G, Liu L Y, Lu J T, et al. Corrosion Science, 2011, 53(2), 1621.
50 Gao X H, Li Y F, Zhu J J, et al. Rare Metal Materials and Engineering, 2017(5), 1445(in Chinese).
高晓辉, 李玉峰, 祝晶晶, 等.稀有金属材料与工程, 2017(5), 1445.
51 Shao Z C, Wang M, Zhang Q F. Rare Metal Materials and Engineering, 2015, 44(6), 1541(in Chinese).
邵忠财, 王明, 张庆芳.稀有金属材料与工程, 2015, 44(6), 1541.
52 Mahidashtia Z, Shahrabia T, Ramezanzadeh B. Progress in Organic Coa-tings, 2018, 114 (1), 19.
53 Hassannejad H, Moghaddasi M, Saebnoori E, et al. Journal of Alloys & Compounds, 2017, 725, 968.
54 Loperena A P, Lehr I L, Saidman S B. Journal of Magnesium & Alloys, 2016, 4(4), 278.
55 Zhao Y, Guo R G, Niu L Q, et al. Surface Technology, 2014, 43(3), 15(in Chinese).
赵勇, 郭瑞光, 牛林清, 等.表面技术, 2014, 43(3), 15.
56 Li J Z, Guo Z G, Tang C B. Materials Protection, 2017, 50(9), 52(in Chinese).
李金枝, 郭瑞光, 唐长斌.材料保护, 2017, 50(9), 52.
57 Thomas R, Umapathu M J. Silicon, 2017, 9(5), 1.
58 Zhao H, Cai S, Ding Z, et al. RSC Advances, 2015, 5(31), 24586.
59 Heller D K, Fahrenholtz W G, Okeefe M J. Corrosion Science, 2010, 52(2), 360.
60 Castano C E, Okeefe M J, Fahrenholta W G. Surface & Coatings Technology, 2014, 246(10), 77.
61 Mauryar R, Siddiqui A R, Balani K. Applied Surface Science, 2018, 15 (443), 429.
62 Duan G, Yang L, Liao S, et al. Corrosion Science, 2018, 1(135), 197.
63 Nicolo A D, Paussa L, Gobessi A, et al. Surface & Coatings Technology, 2016, 287, 33.
64 Lei L, Shi J, Wang X, et al. Applied Surface Science, 2016, 376, 161.
65 Shao H F, Gao X, Ji K J. China Surface Engineering, 2018, 31(2), 121(in Chinese).
邵鸿飞, 高翔, 冀克俭.中国表面工程, 2018, 31(2), 121.
66 Gao X, Lu K, Xu L, et al. Nanoscale, 2015, 8(3), 1555.
67 Yoganandan G, Pradeep P K, Balaraju J N. Surface & Coatings Techno-logy, 2015, 270, 249.
68 Mohedano M, Blawert C, Zheludkevich M L. Surface & Coatings Technology, 2015, 269(1), 145.
69 Gao H F, Tan H Q, Li J, et al. Surface Engineering, 2012, 28(5), 387.
70 Zhang R, Cai S, Xu G, et al. Applied Surface Science, 2014, 313, 896.
71 Gupta R K, Mensah D K, et al. Journal of Materials Science & Technology, 2013, 29(2), 180.
72 Phuong N V, Gupta M, Moon S. Progress in Organic Coatings, 2017, 102, 144.
73 Guo X, Hurley B, Yang F, et al. Electrochimica Acta, 2017, 246.
74 Zhao D D, Wang Z Q, Sun R X, et al. Transaction of Materials and Heat Treatment, 2014, 35(s2), 162(in Chinese).
赵丹丹, 王志强, 孙瑞雪, 等.材料热处理学报, 2014, 35(s2), 162.
75 Gupta R K, Mensah D K, Sankar J, et al. Transaction of Nonferrous Me-tals Society of China, 2013, 23(5), 1237.
76 Zhou Z C, Wang T T, Wu F, et al. Surface Technology, 2017, 46(7), 173(in Chinese).
周祉存, 王婷婷, 吴方, 等.表面技术, 2017, 46(7), 173.
77 Zou Z L, Wang B P, Ma J F, et al. Surface Technology, 2018, 47(2), 164(in Chinese).
邹忠利, 王北平, 马金福, 等.表面技术, 2018, 47(2), 164.
[1] 赵静, 王天鹏, 张淮浩. 磁场作用下十二烷基苯磺酸钠对阳极铝箔的缓蚀性能及比电容的影响[J]. 材料导报, 2020, 34(6): 6156-6160.
[2] 李慧莹, 赵君文, 戴光泽, 韩靖, 李旭嘉. 钼酸钠含量对无铬锌铝涂层性能的影响[J]. 材料导报, 2020, 34(2): 2105-2109.
[3] 周婉秋, 赵玉明, 刘晓安, 杨佳宇, 姜文印, 辛士刚, 康艳红. 1-乙基-3-甲基咪唑硫酸乙酯盐离子液体中采用电化学法合成聚苯胺薄膜及其耐蚀性[J]. 材料导报, 2020, 34(12): 12152-12157.
[4] 肖忆楠, 乔岩欣, 李月明, 盛立远, 赖琛, 奚廷斐. 医用钛及钛合金表面改性技术的研究进展[J]. 材料导报, 2019, 33(Z2): 336-342.
[5] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[6] 卢勇, 冯辉霞, 张晓芳. 金属表面植酸转化膜研究进展[J]. 材料导报, 2019, 33(9): 1455-1461.
[7] 毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
[8] 常钦鹏, 陈友媛, 安振东, 王磊. B30铜镍合金表面植酸转化膜的制备工艺研究[J]. 材料导报, 2019, 33(23): 3876-3881.
[9] 向红亮, 刘春育, 邓丽萍, 张伟, 任建斌. 固溶温度对节约型双相不锈钢组织及性能的影响[J]. 材料导报, 2019, 33(16): 2759-2764.
[10] 王先, 于思荣, 赵严, 张鹏, 刘恩洋, 熊伟. 微弧氧化时间对TA15合金陶瓷膜表面形貌和性能的影响[J]. 材料导报, 2019, 33(12): 2009-2013.
[11] 陈龙, 李文芳, 祝闻. 6063铝合金表面钛/锆/钼转化膜的制备及自愈性[J]. 材料导报, 2019, 33(10): 1691-1696.
[12] 龚圣, 沈之川, 周新华, 陈铧耀, 徐华. 毒死蜱/脲醛树脂微胶囊的制备工艺优化及缓释动力学[J]. 《材料导报》期刊社, 2018, 32(8): 1241-1246.
[13] 马妞, 黄佳木, 苏俊, 尹凌毅. MgO纳米颗粒对AZ31B镁合金微弧氧化涂层耐磨和耐蚀性的影响[J]. 材料导报, 2018, 32(16): 2768-2772.
[14] 孙博,程江波,刘奇,冯源,梁秀兵. 高速电弧喷涂FePSiBNb纳米结构的涂层结构及电化学行为[J]. 《材料导报》期刊社, 2018, 32(12): 1978-1982.
[15] 吴长军, 陆龙飞, 杨威, 苏旭平, 王建华. Fe和Ce 含量对Galfan合金力学性能及耐蚀性的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 56-59.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed