Please wait a minute...
材料导报  2020, Vol. 34 Issue (13): 13167-13174    https://doi.org/10.11896/cldb.19040091
  金属与金属基复合材料 |
铝与钢异种材料连接技术及其研究进展
李岩1,2, 胡志力1,2, 于海洋1,2, 庞秋3
1 现代汽车零部件技术湖北省重点实验室,武汉 430070
2 汽车零部件技术湖北省协同创新中心,武汉 430070
3 武汉东湖学院机电工程学院,武汉 430212
Research Progress and Technology of Dissimilar Joining Between Aluminum and Steel
LI Yan1,2, HU Zhili1,2, YU Haiyang1,2, PANG Qiu3
1 Key Laboratory of Hyundai Auto Parts Technology, Hubei Province, Wuhan 430070, China
2 Collaborative Innovation Center of Auto Parts Technology, Hubei Province, Wuhan 430070, China
3 School of Mechanical and Electrical Engineering, Wuhan Donghu University, Wuhan 430212, China
下载:  全 文 ( PDF ) ( 5573KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在工业快速发展和节能减排的大环境下,各行业对材料性能的要求越来越高。因此性能更加全面的异种金属结构开始受到关注,钢铝混合结构兼具功能性和经济性的优势,使其在航空航天、车辆等领域得到了广泛的应用。对汽车行业而言,轻量化是未来发展的必然趋势,而钢铝混合车身的应用是白车身减重最直接、有效的方式。与此同时,混合车身的出现也对钢铝连接工艺提出了新的要求。现有的四类钢铝连接工艺包括熔焊、钎焊、机械连接和固态连接。
钢与铝的熔点、热导率、延展性和密度等物理化学性质的差异是二者连接存在困难的主要原因。熔焊工艺接头拥有较高强度,但焊接过程中会产生降低接头强度的金属间化合物;钎焊工艺接头强度高、平整性好、焊接参数可控性强,但对板材清洁度要求较高且存在焊接缺陷;机械连接工艺简单且对连接强度有保证,但无法保证接头的气密性;固态连接工艺接头拥有较高强度,但受到尺寸的限制且价格昂贵。目前提高钢铝接头质量的方向主要有:(1)现有工艺参数优化;(2)板材预处理;(3)板材布置形式调整和新工艺;(4)现有工艺复合创新。
国内外科研人员对钢铝连接工艺进行大量研究后发现:(1)通过控制实验参数,各类工艺均可获得不同实验条件下的最优接头。(2)对钢板预涂Al层或者Zn层等预处理方式均可增强二者的连接性。(3)机械连接工艺及固态连接工艺中钢板与铝板的相对位置会对接头的质量产生影响。对于部分连接技术,超声波、Zn箔等新元素的加入也可优化接头质量。(4)复合工艺接头质量明显优于单工艺接头,如自冲铆接+电阻点焊(SPR+RSW)、搅拌摩擦焊+冷金属过渡电弧焊接(FSW+CMT)等复合工艺接头。
本文综述了现有的四类连接工艺,主要涉及工艺基本原理、技术优劣、接头性能、工艺要领、应用场合;同时对国内外研究现状进行了总结,包括工艺参数、材料种类及尺寸、接头性能及形貌、结论及实验数据;最后对钢铝连接工艺发展方向进行了展望,为钢铝混合车身的设计和制造提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李岩
胡志力
于海洋
庞秋
关键词:  轻量化  钢铝  异种金属结构  连接工艺    
Abstract: Under the environment of rapid industrial development and energy saving and emission reduction, various industries have increasingly higher requirements on material performance. Therefore, heterogeneous metal structures with more comprehensive performance have attracted attention in recent years focus. The steel-aluminum hybrid structure has been widely used in plenty of industries including aerospace and vehicles because of its functional and economic advantages. For the automotive industry, lightweight is an inevitable trend for future development, and the application of steel-aluminum hybrid bodies is the most direct and effective way to reduce body-in-white weight. At the same time, the emergence of hybrid bodies also puts forward new requirements for the steel-aluminum joining process. There are four types joining processes of steel and aluminum include: fusion welding, brazing, mechanical joining and solid state joining.
Difference between steel and aluminum in physical and chemical properties including melting point, thermal conductivity, ductility, and density makes it hard to join them together. The fusion welding process joint has high strength, but the welding process will produce intermetallic compounds that reduce the strength of the joint; the brazing process joint has high strength, good flatness, and strong controllability of welding para-meters, but it requires more cleanliness of the plate and has welding defects; the mechanical connection process is simple and its joint strength can be guaranteed, but the airtightness of the joint cannot be guaranteed; the solid state joining joint has high strength, but is limited by size and expensive price. In order to improve the quality of steel and aluminum joining joints, there are four main research directions currently: (1) optimization of existing process parameters; (2) plate pretreatment; (3) adjustment of plate position layout and new technology; (4) compound innovation of existing technology.
According to a large number of studies of domestic and foreign researchers on the steel-aluminum joint process, it can be found that: (1) by controlling the experimental parameters, the optimal joint can be obtained under different experimental conditions and joining processes. (2) Pretreatment methods such as pre-coating Al layer or Zn layer on the steel plate makes it easier to join. (3) The relative position of the steel plate and the aluminum plate in the mechanical joining process and the solid state joining process will affect the quality of the joint. For some joining technologies, the addition of new elements such as ultrasonic generator and Zn foil can also optimize joint quality. (4) The quality of composite process joints is significantly better than single process joints, such as SPR + RSW (self-piercing riveting + resistance spot welding), FSW+CMT (friction stir welding + cold metal transition arc welding) and other composite process joints.
This article reviews the four types existing joining process between steel and aluminum, mainly involving the basic principles of the process, technical advantages and disadvantages, joint performance, process essentials, and application occasions. At the same time, the domestic and foreign research status are summarized, including process parameters, material types and sizes, joint performance and morphology, conclusions and experimental data. Finally, the development direction of steel-aluminum joining process is prospected, which can provide a reference for the design and manufacture of steel and aluminum hybrid body.
Key words:  lightweight    steel and aluminum    heterogeneous metal structure    joining process
                    发布日期:  2020-06-24
ZTFLH:  TG44  
基金资助: 国家自然科学基金(51775397);中国汽车产业创新发展联合基金(U1564202);新能源汽车科学与关键技术学科创新引智基地资助(B17034);上海市复杂薄板结构数字化制造重点实验室开放课题资助(2017002)
通讯作者:  pqiuhit@126.com   
作者简介:  李岩,1998年3月生,武汉理工大学车辆工程专业,研究方向为异种材料连接技术。
庞秋,女,1979年10月生。2013年于哈尔滨工业大学取得博士学位,主要从事轻量化技术领域的研究。近5年来主持了国家自然科学基金、湖北省高等学校优秀中青年科技创新团队计划项目、现代汽车零部件技术湖北省重点实验室开放基金项目、企业横向技术开发课题等研究项目。发表SCI论文21篇。
引用本文:    
李岩, 胡志力, 于海洋, 庞秋. 铝与钢异种材料连接技术及其研究进展[J]. 材料导报, 2020, 34(13): 13167-13174.
LI Yan, HU Zhili, YU Haiyang, PANG Qiu. Research Progress and Technology of Dissimilar Joining Between Aluminum and Steel. Materials Reports, 2020, 34(13): 13167-13174.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040091  或          http://www.mater-rep.com/CN/Y2020/V34/I13/13167
1 Zhang L Y. Automobile Technology & Material, 2018(7),1(in Chinese).
张林阳. 汽车工艺与材料, 2018(7), 1.
2 Jiao D N, Wang X F, Tan F,et al. Shandong Industrial Technology, 2019(6), 5(in Chinese).
焦登宁, 王旭飞, 谭飞, 等. 山东工业技术, 2019(6), 5.
3 Li G W, Wang N N, Qiu R F, et al. Light Alloy Fabricati on Technology, 2015(6), 62(in Chinese).
李国伟, 王楠楠, 邱然锋, 等. 轻合金加工技术, 2015(6), 62.
4 Wu K L, Yuan X J, Li T, et al. Journal of Materials Processing Techno-logy, 2019, 266, 230.
5 Singh J, Arora K S, Shukla D K. Journal of Alloys and Compounds, 2018, 783,753.
6 Harada Y, Sada Y, Kumai S. Journal of Manufacturing Processes, 2016, 23, 75.
7 Lee J S, Ryu Y S, Kim N I, et al. Transactions of Nonferrous Metals Society of China, 2009, 19(1), S271.
8 You W. Shandong Industrial Technology, 2018(24), 66(in Chinese).
游伟. 山东工业技术, 2018(24), 66.
9 Yang Y. Laser Welding of dissimiliar metal of aluminium and steel. Master’s Thesis, Changchun University of Science and Technology, China, 2011(in Chineese).
杨阳. 铝与钢的异种材料激光焊接. 硕士学位论文, 长春理工大学, 2011.
10 Peng K. Research of microstructure and properties of aluminium/stainless steel TIG welding-brazing with hot-wire. Master’s Thesis, Harbin Institute of Technology, China, 2012(in Chinese).
彭康. 铝合金/不锈钢异种金属热丝TIG熔-钎焊组织与性能研究. 硕士学位论文, 哈尔滨工业大学,2012.
11 Wu K L, Yuan X J, Wang H D, et al. Journal of Chinese Electron Microscopy Society, 2017(6), 552(in Chinese).
武康龙, 袁新建, 汪浩东, 等. 电子显微学报, 2017(6), 552.
12 Song J L, Lin S B, Yang C L, et al. Journal of Alloys and Compounds, 2009, 488(1), 217.
13 Li H H,Zhou Q Y, Zhang X G, et al. Automobile Technology & Mate-rial, 2018(6),48(in Chinese).
李红花, 周启玉, 张旭光, 等. 汽车工艺材料, 2018(6), 48.
14 Mori K, Abe Y. Journal of Materials Processing Technology, 2012, 212, 884.
15 Qiu C, Guan Z D, Du S Y, et al. Composites Part B-Engineering, 2019, 161, 386.
16 Wang Y D, Ye X Y, Liu Y. Automoblile Technology & Material, 2018(5), 10(in Chinese).
王有道, 叶雪洋, 刘岩, 等. 汽车工艺与材料, 2018(5), 10.
17 Xu W H, Zhang Q H. Automoblile Technology & Material, 2017(12), 38(in Chinese).
徐文欢, 张秋花. 汽车工艺与材料, 2017(12), 38.
18 Wang S W. Automobile Maintenance, 2017(12),16(in Chinese).
王圣惟. 汽车维修, 2017(12),16.
19 Yu G. The analysis of CMT weldability for dissimilar metals between aluminum alloys and galvanized steels. Master’s Thesis, Lanzhou University of Technology, China, 2012(in Chinese).
余刚. 铝钢异种金属冷金属过渡技术焊接性研究. 硕士学位论文, 兰州理工大学, 2012.
20 Lenardo Agudo, Dominique Eyide, Christian H, et al. Journal of Mate-rials Science, 2007, 42(12), 4205.
21 Chen C, Kong L, Cheng X T, et al. Electric Welding Machine, 2018(12), 66(in Chinese).
陈灿, 孔谅, 程轩挺, 等. 电焊机, 2018(12), 66.
22 Qiu R F, Shi H X, Zhang K K, et al. Materials Characterization, 2010, 61(7), 684.
23 Lu Y, Mayton E, Song H, et al. Science and Technology of Welding and Joining, 2020,25(3), 218.
24 Harish M R, Kang J D, Shi L T, et al. International Journal of Fatigue, 2018, 116, 13.
25 Arghavani M R, Movahedi M, Kokabi A H. Materials and Design, 2016, 102, 106.
26 Wang T, Zhou D W, Zhang Y. Materials Review A:Review Papers, 2011, 25(12), 106(in Chinese).
王涛, 周惦武, 张屹, 等. 材料导报:综述篇, 2011, 25(12), 106.
27 Yang J, Zhang H, Li Y L. Applied Laser, 2013(5),55(in Chinese).
杨瑾, 张华, 李玉龙. 应用激光,2013(5),55.
28 Sierra G, Peyre P, Beaume F D, et al. Materials Characterization. 2008, 59(12), 1705.
29 Wang Chunming, Cui Lingyue, Mi Gaoyang, et al. Journal of alloys and Compounds,2017,726,556.
30 Fan J, Thomy C, Vollertsen F. Physics Procedia, 2011, 12, 134.
31 Alexandre Mathieu, Rajashekar Shabadi, Alexis Deschamps, et al. Optics & Laser Technlogy, 2007, 39(3), 652.
32 Windmann M, Rottger A, Kvgler H, et al. Journal of Materials Proces-sing Technology, 2015, 217, 88.
33 Zheng W W. Research of process on CMT of aluminum/steel. Master’s Thsis, Zhengzhou University, China, 2018(in Chinese).
郑雯雯. 钢/铝CMT熔-钎焊焊接工艺研究.硕士学位论文, 郑州大学, 2018.
34 Zhang Y, Yang R S, Li F. Automobile Technology & Material, 2017(11), 60(in Chinese).
张勇, 杨如松, 李芳. 汽车工艺与材料, 2017(11), 60.
35 Zhu Y H, Geng Z Q. Electric Welding Machine, 2011(4),69(in Chinese).
朱宇虹, 耿志卿. 电焊机, 2011(4),69.
36 Babu S, Panigrahi S K, Janaki Ram G D, et al. Journal of Materials Processing Technology,2019, 266, 155.
37 Cao R, Yu G, Chen J H, et al. Journal of Materials Processing Technology, 2013, 213(10), 1753.
38 Meng Shenghao. Research on process and mechanism of laser wire wel-ding-brazing for Al/steel dissimilar materials based on interface control. Master’s Thesis, Harbin Institute of Technology, China, 2007(in Chinese).
孟圣昊. 基于界面调控的铝/钢异种金属激光填丝熔钎焊工艺及机理研究. 硕士学位论文, 哈尔滨工业大学, 2007.
39 Wu H, Shi X F. New Technology & New Process, 2018 (11), 11(in Chinese).
吴辉, 石小富. 新技术新工艺, 2018 (11), 11.
40 Wang J M, Wang X W. Hot Working Technology, 2016 (21), 201(in Chinese).
王继明, 王晓伟. 热加工工艺, 2016(21), 201.
41 Wu M F, Si N C, Chen J. Transactions of Nonferrous Metals Society of China, 2011, 21(5), 1035.
42 Ran Weifeng. Study on brazing of dissimilar metals of aluminum and steel. Master’s Thesis, Dalian Jiaotong University, China, 2016(in Chinese).
冉伟锋. 铝/钢异种金属的钎焊研究. 硕士学位论文, 大连交通大学, 2016.
43 Takehiko Watanabe, Hideo Sakuyama, Atsushi Yanagisawa. Journal of Materials Processing Technology, 2009, 209(15-16),5475.
44 Yan X Y. Study on the effect of thermal on joining steels and aluminum alloys. Master’s Thesis, Jilin University, China, 2016(in Chinese).
闫雪燕. 基于热影响的钢铝异种材料零件连接研究. 硕士学位论文, 吉林大学, 2016.
45 Mori K, Abe Y, Kato T. Journal of Materials Processing Technology, 2012, 212, 1900.
46 Hasheminia S M, Park B C, Chun H J, et al. Composites Part B-Engineering, 2019, 161, 702.
47 Hao Z, Juan P T, et al. Engineering Structures, 2019, 183, 1121.
48 Chen N N, Wang H P, Wang M, et al. Journal of Materials Processing Technology, 2019, 265, 158.
49 Lou M. Developing of equipment and process of self-piercing riveting for lightweight materials. Master’s Thesis, Shanghai Jiao Tong University,China,2009(in Chinese).
楼铭. 自冲铆接设备研制及轻量化材料自冲铆接工艺开发. 硕士学位论文, 上海交通大学, 2009.
50 Shao Q. The numerical and experimental analysis of T-joints used in the lightweight technologies of car body. Master’s Thesis, Dalian University of Technology, China,2013(in Chinese).
邵棋. 用于车身轻量化T型粘接接头的数值实验分析. 硕士学位论文, 大连理工大学,2013.
51 Haque R. Archives of Civil and Mechanical Engineering, 2018, 18(1), 83.
52 Mori K, Kato T, Abe Y, et al. CIRP Annals, 2006, 55(1),283.
53 Abe Y, Kato T, Mori K. Journal of Materials Processing Technology, 2009, 209(8), 3914.
54 Li Yongbing, Lou Ming, Wang Yuan, et al.Journal of Materials Proces-sing Technlogy, 2014,214(10), 2119.
55 Xiang Q. Study on process and mechanical properties of friction stir welded dissimilar Al-steel joints. Master’s Thesis, Shenyang Ligong University, China,2015(in Chinese).
相倩. 铝-钢异种金属搅拌摩擦焊工艺及性能研究. 硕士学位论文, 沈阳理工大学, 2015.
56 Xu A L. China Strategic Emerging Industry, 2018(24), 167(in Chinese).
徐安莲. 中国战略新兴产业, 2018(24), 167.
57 Takehiko Watanabe, Hirofumi Takayama, Atsushi Yanagisawa. Journal of Materials Processing Technology, 2006, 178(1-3), 342.
58 Mishra R S, Ma Z Y. Materials Science and Engineering R:Reports, 2005, 50(1-2), 1.
59 Shen Z, Ding Y, Chen J, et al. Journal of Materials Science & Technology, 2019, 35, 1027.
60 Piccini J M, Svoboda H G.Procedis Materials Science, 2015, 9, 504.
61 Jamie D Skovron, Laine Mears, et al. SAE International, 2015, 8(1), 35.
62 Emel T, Jerry E G, John C, et al. Materials and Design, 2010, 31,2305.
63 Muralimohan C H, Haribabu S, Hariprasada R Y, et al. Journal of Advances in Mechanical Engineering and Science, 2015, 1(1), 57.
64 Mumin Sahin. International Journal of Advanced Manufacturing Technology, 2009, 41(5), 487.
65 He L, Wei X B. Sci-Tech & Development of Enterprise, 2015(17), 22(in Chinese).
何柳, 魏小宝. 企业科技与发展, 2015(17), 22.
66 Li Shuhan, Chen Yuhua, Kang Jidong, et al. Materials Letters,2019, 239, 212.
67 Zheng Qixian, Feng Xiaomei, Shen Yifu, et al. Jounral of Alloys and Compounds, 2016, 686, 693.
[1] 刘洋, 庄蔚敏, 解东旋. 纤维增强复合材料与铝合金自冲铆接研究进展[J]. 材料导报, 2020, 34(11): 11053-11063.
[2] 陈宇豪, 薛松柏, 王博, 韩翼龙. 汽车轻量化焊接技术发展现状与未来[J]. 材料导报, 2019, 33(Z2): 431-440.
[3] 刘伟东, 薄旭盛, 何成. 基于轻量化材料防撞梁的低速碰撞性能研究[J]. 材料导报, 2019, 33(Z2): 468-472.
[4] 尹雪亮, 陈敏, 王楠, 徐磊, 彭可武. Y2O3添加对MA-CA2-CA6复合材料烧结行为的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1357-1361.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed