Please wait a minute...
材料导报  2019, Vol. 33 Issue (9): 1455-1461    https://doi.org/10.11896/cldb.18030037
  材料与可持续发展(二)——材料绿色制作与加工* |
金属表面植酸转化膜研究进展
卢勇1,2, 冯辉霞1, 张晓芳1
1 兰州理工大学石油化工学院,兰州 730050;
2 中国石油兰州石化公司研究院,兰州 730060
An Overview on Study of Phytic Acid Conversion Coatings on Metal Surface
LU Yong1,2, FENG Huixia1, ZHANG Xiaofang1
1 School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050;
2 Research Institute of Lanzhou Petrochemical Corporation of Petro China, Lanzhou 730060
下载:  全 文 ( PDF ) ( 1629KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 化学转化膜技术是金属物件表面处理中应用较为广泛的一项技术,可使金属物件得到较好的防护,可用于金属防腐、耐磨、减摩、涂装底层,其应用涉及汽车制造、家电以及五金构件加工等诸多行业。化学转化膜技术作为最常用的金属表面预处理技术,因工艺简单、效果显著、沉淀均匀、成本低且膜的厚度易控制等优势而受到越来越多的关注。
传统的铬酸盐和磷酸盐转化处理方法会对环境产生持久性危害,因而已逐步被绿色环保的方法取代。目前,金属表面绿色前处理技术的开发和应用已成为该领域十分重要的研究方向。经过十几年的努力,研究人员相继开发了各类环境友好型转化膜。本文针对无铬化学转化膜,从锆盐、钛盐、钒盐、钼酸盐、锡酸盐、铌盐和稀土元素类转化膜等的制备工艺、防腐蚀效果等方面阐述了无铬化学转化膜的研究进展。虽然,无铬转化新技术有一定的实践应用,但作为防腐蚀技术而言,单一使用该技术的效果并不理想,还需要与其他方法相结合并加以改进。
本文重点分析了植酸转化膜的沉积机理、影响因素及改进技术发展。植酸是从植物中提取的无毒天然有机大分子,分子中含有能够与金属离子发生螯合作用的六个磷酸基,每个磷酸基中又有两个羟基和四个氧原子,可在较宽的pH值范围内与大多数二价及以上的金属离子螯合形成稳定的配合物。植酸作为金属表面化学转化膜成膜材料在金属腐蚀与防护领域的应用越来越广泛。大量研究结果表明,金属在植酸处理液中通过电化学反应,使金属表面的金属离子与植酸分子发生螯合作用,沉积形成植酸化学转化膜。植酸化学转化膜的研究涉及多种金属如镁合金、钢、铁等。本文通过分析植酸转化膜的制备过程,总结了影响转化膜表面形貌和耐蚀性的三个主要因素,即植酸的浓度、处理液的pH值和处理时间;同时还归纳了单一植酸转化膜存在的不足,如膜层表面存在微小裂纹、膜层较薄、耐蚀时间较短、耐腐蚀效果不佳等。研究表明,提高植酸转化膜保护效率的途径有碱预处理、热后处理及与金属离子协同等改进技术,以及同其他转化膜复合、同其他物质复合等复合方法。此外,还展望了植酸在金属表面转化处理的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢勇
冯辉霞
张晓芳
关键词:  金属  植酸  转化膜  防腐    
Abstract: Chemical conversion coating technology is widely used in metal surface treatment, and exhibit favorable protective effect, which holds extensive applications in metal anti-corrosion, wear resistance, antifriction, coating bottom layer. Its application involves automobile manufactu-ring, household appliances and hardware processing and many other industries. As the most commonly used pretreatment technology, chemical conversion coating technology has attracted more and more attention because of its advantages such as simple treatment process, remarkable effect, uniform precipitation, low processing cost, as well as the easy control of the coating thickness etc.
Conventional approaches involving conversion of chromate and phosphate may produce lasting harm to the environment, and have been gra-dually replaced by the environmental-friendly approaches. Currently, the development and application of green metal surface pretreatment techno-logy has become a very important research direction in this field. After more than ten years of effort, researchers have developed diverse kinds of environment-friendly conversion coating. In this papers, we introduce the progress of a variety of chromium-free and environment-friendly conversion coatings, such as zirconium, titanium, vanadium, molybdate, stannic acid, niobium and rare earth conversion coatings, in view of their preparation process and corrosion resistance effects. Although the chromium-free conversion coatings technology has been applied practically, and it fail to achieve satisfactory anti-corrosion effect, therefore a composite approach is needed for further improving the anti-corrosion efficiency.
In this paper, we focus on the deposition mechanism, influencing factors and technical development of phytic acid conversion coating. Phytic acid is a non-toxic natural organic macro-molecules extracted from plants. It contains six phosphate groups that can chelate with metal ions. Each phosphate group bear two hydroxyl groups and four oxygen atoms, which are capable of forming stable complexes with most of the bivalent and above valence metal ions by chelating in a wide range of pH value. Phytic acid has been widely used as film-former for constructing chemical conversion coating in the field of metal anti-corrosion and protection. Numerous research results have demonstrated that metal ions on the metal surface were chelated with phytic acid molecules by electrochemical reaction in phytic acid treatment solution, and the phytic acid chemical conversion coating is formed. Phytic acid can be used in chemical coating processing for magnesium alloy, steel, iron and other metal. By analyzed the preparation process of phytic acid conversion coating, we also elaborate the three importment influence factors which affect the surface morphology and corrosion resistance of the conversion coating, including the concentration of phytic acid, pH of the solution and processing time. Meanwhile, we summarize the defects after the treatment of the metal substrate with single phytic acid, such as the micro-cracks on metal surface, thin film, short corrosion resistance duration, low anti-corrosion efficiency. It has been proved that the protection performance of phytic acid conversion coating can be enhanced by alkali pretreatment, thermal post-treatment, coordination with metal ions, as well as combination with other conversion films and other materials. Finally, we point out the development prospect of phytic acid in metal surface treatment.
Key words:  metal    phytic acid    conversion coating    anti-corrosion
                    发布日期:  2019-05-08
ZTFLH:  TG179  
基金资助: 国家科技部“科技人员服务企业行动项目”(2009GJG10041);甘肃省高校基本科研业务费(1105ZTC136)
通讯作者:  fenghx66@163.com   
作者简介:  卢勇,2011年6月毕业于兰州理工大学,获得工学硕士学位。现为兰州理工大学石油化工学院博士研究生,在冯辉霞教授的指导下进行研究。目前主要从事功能材料在防腐蚀领域的应用研究。冯辉霞,兰州理工大学石油化工学院教授,博士研究生导师。1987年兰州大学化学系无机化学专业本科毕业。2006年毕业于兰州理工大学材料加工工程专业,获工学博士学位。2005年至2006年在日本秋田县立大学做访问研修。先后两次入选甘肃省领军人才,现为中国化学会会员,甘肃省科技普及学会理事,兰州理工大学教学指导委员会委员,担任国家自然科学基金项目评议专家。主要从事功能复合材料研究及应用。近年来,在功能材料领域发表论文100多篇,包括RSC Advances、Advanced Materials、Journal of Power Sources、Journal of Magnetism and Magnetic Materials。共主编、副主编两部专著,主编教材四部。
引用本文:    
卢勇, 冯辉霞, 张晓芳. 金属表面植酸转化膜研究进展[J]. 材料导报, 2019, 33(9): 1455-1461.
LU Yong, FENG Huixia, ZHANG Xiaofang. An Overview on Study of Phytic Acid Conversion Coatings on Metal Surface. Materials Reports, 2019, 33(9): 1455-1461.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18030037  或          http://www.mater-rep.com/CN/Y2019/V33/I9/1455
1 Khun N W, Frankel G S. Corrosion Science,2015,71,277.
2 Ramezanzadeh B, Attar M M. Surface & Coatings Technology,2011,205(19),4649.
3 Yang K H, Ger M D, Hwu W H, et al. Materials Chemistry & Physics,2007,101(2),480.
4 Gao H F, Tan H Q, Li J, et al. Surface Engineering,2012,28(5),387.
5 Zhang S, Li Q, Chen B, et al. Electrochimica Acta,2010,55(3),870.
6 Baratidraband G H, Liofkhazrei M. Surface Review & Letters,2017,3(24),17300031.
7 Ramezanzadeh B, Akbarian M, Ramezanzadeh M, et al. Journal of the Electrochemical Society,2017,164(6),C224.
8 Hosseini R M, Sarabi A A, Mohammadloo H E, et al. Surface & Coa-tings Technology,2014,258,437.
9 Cerezo J, Vandendael I, Posner R, et al. Surface & Coatings Technology,2013,236(24),284.
10 Cerezo J, Vandendael I, Posner R, et al. Applied Surface Science,2016,366,339.
11 Cerezo J, Posner R, Vandendael I, et al. Materials & Corrosion,2016,67(4),361.
12 Winiarski J, Masalski J, Szczygie B. Surface & Coatings Technology,2013,236(24),252.
13 Motamedi M, Attar M M. RSC Advances,2016,6(50),44732.
14 Ardelean H, Frateur I, Marcus P. Corrosion Science,2008,50(7),1907.
15 Wang C, Jiang F, Wang F. Corrosion Science,2004,46(1),75.
16 Yang L, Li J, Yu X, et al. Applied Surface Science,2008,255(5),2338.
17 Li L L, Yang Y Y, Cui X F, et al. China Surface Engineering,2013,26(1),51(in Chinese).
李玲莉,杨雨云,崔秀芳,等.中国表面工程,2013,26(1),51.
18 Zhao D Z, Zhang D F, Liu Y P, et al. Rare Metal Materials and Engineering,2017,46(2),289.
19 Zou M H, Li L J, Lei J L, et al. Journal of The Chinese Rare Earth Society,2009,27(3),375(in Chinese).
邹茂华,李凌杰,雷惊雷,等.中国稀土学报,2009,27(3),375.
20 Han B J, Gu D D, Yang Y, et al. International Journal of Electrochemical Science,2017,12(1),374.
21 Yang L H, Li J Q, Yu X, et al. The Chinese Journal of Nonferrous Metals,2008,18(7),1211(in Chinese).
杨黎晖,李峻青,于湘,等.中国有色金属学报,2008,18(7),1211.
22 Liu X, Zhang T, Shou Y, et al. Corrosion Science,2010,52(3),892.
23 Gnedenkov A S, Sinebryukhov S L, Mashtalyar D V, et al. Corrosion Science,2016,102,269.
24 Scholes F H, Soste C, Hughes A E, et al. Applied Surface Science,2006,253(4),1770.
25 Montemor M F, Simoes A M, Ferreira M G S, et al. Applied Surface Science,2008,254,1806.
26 Montemor M F, Simoes A M, Carmezib M J. Applied Surface Science,2007,253,6922.
27 Johansen H D, Brett C M A, Motheo A J. Corrosion Science,2012,63,342.
28 Zand R Z, Verbeken K, Adriaens A. Progress in Organic Coatings,2012,75(4),463.
29 Kong G, Liu L, Lu J, et al. Corrosion Science,2011,53(4),1621.
30 Maga J A. Journal of Agricultural & Food Chemistry,1982,30(1),1.
31 Cheryan M. CRC Critical Reviews in Food Technology,1980,13(4),297.
32 Wang H, Zhou Y, Ma J, et al. Food Chemistry,2013,141(1),18.
33 Hao C, Yin R H, Wan Z Y, et al. Corrosion Science,2008,50(12),3527.
34 Odell B L, Savage J E. Proceedings of the Society for Experimental Biology and Medicine,1960,103,304.
35 El-Sayed A R, Harm U, Mangold K M, et al. Corrosion Science,2012,55(2),339.
36 Li L, Zhang G, Su Z. Angewandte Chemie,2016,55(31),1.
37 Ejima H, Richardson J J, Liang K, et al. Science,2013,341(6142),154.
38 Shi H, Han E H, Liu F, et al. Applied Surface Science,2013,280(9),325.
39 Cui X, Li Q, Li Y, et al. Applied Surface Science,2008,255(5),2098.
40 Guo X, Du K, Gao Q, et al. Corrosion Science,2013,76(2),129.
41 Chidiebere M A, Oguzie E E, Liu L, et al. Industrial & Engineering Chemistry Research,2014,53(18),7670.
42 Antonijevic M M, Petrovic M B. International Journal of Electrochemical Science,2008,3(1),1.
43 Chen J, Song Y, Shan D, et al. Corrosion Science,2013,74,130.
44 马厚义,高翔.中国专利,201510332213.9,2015.
45 Sammartano S, Crea F, De Stefano C, et al. Coordination Chemistry Reviews,2008,252(10),1108.
46 Cui X, Li Y, Li Q, et, al. Materials Chemistry & Physics,2008,111(2),503.
47 Ye C H, Zheng Y F, Wang S Q, et al. Applied Surface Science,2012,258(8),3420.
48 Crea P, Robertis A D, Stefano C D, et al. Biophysical Chemistry,2006,124(1),18.
49 Bohn T, Davidsson L, Walczyk T, et al. The American Journal of Clinical Nutrition,2004,79(3),418.
50 Bauman A T, Chateauneuf G M, Boyd B R, et al. Tetrahedron Letters,1999,40(24),4489.
51 Pan F, Yang X, Zhang D. Applied Surface Science,2009,255(20),8363.
52 Gao L L, Zhang C H, Zhang M L, et al. Journal of Alloys and Compounds,2009,485,789.
53 Hao Y S, Sani L A, Song L, et al. Journal of Chinese Society for Corrosion and Protection,2016,36(6),549(in Chinese).
郝永胜,Sani Luqman Abdullahi,宋立新,等.中国腐蚀与防护学报,2016,36(6),549.
54 Chen Y, Zhao S, Liu B, et al. ACS Applied Materials & Interfaces,2014,6(22),19531.
55 Chen Y, Wan G, Wang J, et al. Corrosion Science,2013,75(16),280.
56 Zhang R, Cai S, Xu G, et al. Applied Surface Science,2014,313,896.
57 Gao X, Li W, Yan R, et al. Surface & Coatings Technology,2017,325,248.
58 Yan R, Gao X, He W, et al. RSC Advances,2017,7(65),41152.
59 Gupta R K, Mensah-Darkwa K, et al. Journal of Materials Science & Technology,2013,29(2),180.
60 Liu J, Guo Y, Huang W, et al. Protection of Metals & Physical Chemistry of Surfaces,2012,48(2),233.
61 Gao H F, Htan Q, Li J, et al. Surface Engineering,2012,28(5),387.
62 Niu L Q, Guo R G. Materials Protection,2016,49(12),30.
63 Mohammadloo H E, Sarabi A A. Progress in Organic Coatings,2016,101,391.
64 Lin B L. Surface Technology,2016,45(3),115.
65 Zhang M, Cai S, Zhang F, et al. Journal of Materials Science Materials in Medicine,2017,28(6),82.
66 Zhang M, Cai S, Shen S, et al. Journal of Alloys & Compounds,2016,658,649.
67 Chen Y, Zhang X, Zhao S, et al. Journal of Materials Chemistry B,2017,5,1.
68 Gupta R K, Mensah-Darkwa K, Sankar J, et al. Transactions of Nonferrous Metals Society of China,2013,23(5),1237.
69 Pak S, Jiang Z H, Yao Z P, et al. Surface & Coatings Technology,2017,325,579.
[1] 梁斌斌, 郭炜, 刘振兴, 杨洪广. 高活性氚钛靶膜固氦特性研究[J]. 材料导报, 2019, 33(z1): 153-157.
[2] 张金中, 李坚, 胡海兵, 关立伟. Yb∶MgAg纳米双层阴极的光电特性改善[J]. 材料导报, 2019, 33(z1): 297-299.
[3] 傅寅旭, 许雨熙, 诸葛黔, 王磊, 宋煦, 王旭. 金属有机骨架材料在生物样品前处理中的应用进展[J]. 材料导报, 2019, 33(z1): 408-411.
[4] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[5] 施方长, 王玉, 高延敏. 改性含N小分子用于金属表面锈层处理对环氧涂层防腐性能的研究[J]. 材料导报, 2019, 33(z1): 523-526.
[6] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[7] 秦小凤, 曹嘉真, 汪小莉, 张贤明, 吕晓书. 纳米零价铁优化体系及其在环境中的应用研究进展[J]. 材料导报, 2019, 33(9): 1550-1557.
[8] 王盼, 童领, 周志文, 杨杰, 王茺, 陈安然, 王荣飞, 孙韬, 杨宇. 金属辅助化学刻蚀法制备硅纳米线的研究进展[J]. 材料导报, 2019, 33(9): 1466-1474.
[9] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[10] 时博, 王金辉, 魏福安. 金属玻璃自由体积理论的研究概述[J]. 材料导报, 2019, 33(7): 1221-1226.
[11] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[12] 邱博, 邢书明, 董琦. 颗粒增强金属基复合材料界面结合强度的表征:理论模型、有限元模拟和实验测试[J]. 材料导报, 2019, 33(5): 862-870.
[13] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[14] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[15] 孙增智, 薛程, 宋莉芳, 邱树君, 褚海亮, 夏永鹏, 孙立贤. 金属有机骨架化合物的二氧化碳吸附性能的研究进展[J]. 材料导报, 2019, 33(3): 541-549.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed