Please wait a minute...
材料导报  2019, Vol. 33 Issue (3): 541-549    https://doi.org/10.11896/cldb.201903022
  高分子与聚合物基复合材料 |
金属有机骨架化合物的二氧化碳吸附性能的研究进展
孙增智1, 薛程1, 宋莉芳1, 邱树君2, 褚海亮2, 夏永鹏2, 孙立贤2
1 长安大学材料科学与工程学院,西安 710064
2 桂林电子科技大学材料科学与工程学院,桂林 541004
Research Progress on Improving the Capture of Carbon Dioxide by Metal-Organic Frameworks
SUN Zengzhi1, XUE Cheng1, SONG Lifang1, QIU Shujun2, CHU Hailiang2, XIA Yongpeng2, SUN Lixian2
1 School of Materials Science and Engineering, Chang’an University, Xi’an 710064
2 School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004
下载:  全 文 ( PDF ) ( 1640KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 能源与环境是人类生存和发展的必要条件,两者协调发展是社会实现可持续发展的重要保证。近几年来,人类赖以生存的化石燃料所带来的负面影响逐渐受到社会的关注,而化石燃料燃烧所释放出的CO2是造成温室效应的主要原因。因此在低碳经济环境下开发出高效环保的碳捕获和封存技术,对能源循环利用及环境保护起到至关重要的作用。
使用胺溶液进行洗涤及吸收CO2是工业上捕获和存储(CCS)最常用的技术之一(例如从电厂烟气中分离CO2),该法可以大幅减少CO2的排放量,但同时也会增大工厂的能源消耗(25%~40%),从而大幅增加额外成本。胺洗涤的其他缺点包括碱溶液对设备的腐蚀、溶剂的损失、大量产热引起的胺降解以及捕获之后不易被分离出来。另一种捕获CO2的方法是采用高温下吸收(化学吸附)的固体材料如碱金属陶瓷、固体胺、层状双氢氧化物或钙基吸附剂,但此类方法的能量消耗和对水分子及其他组分的敏感性限制了其应用范围。此外,采用聚合物或无机膜,在不同的机制下选择性分离混合气体也是一种可行的方法,但很难获得具有高稳定性、高选择性和高通量的薄膜,并且提高膜的吸附分离作用和选择性非常必要。对于固体吸附剂而言,高压下多孔材料对CO2的捕获是以吸附剂与被吸附物相互作用为主,而在低压或低CO2浓度下的选择性捕获主要受吸附剂与被吸附物相互作用以及吸附剂对CO2的化学亲和力两者共同影响。
金属有机骨架化合物(MOFs)具有高结晶度、高比表面积和可调的孔隙结构,在气体吸附尤其是CO2捕获方面展示出巨大的潜力。相对于活性炭、沸石等固体吸附剂来说,MOFs具有更高的吸附选择性。将其应用于碳捕获和封存技术中,可以大幅拓宽CO2吸附剂的可选择范围,在提高吸附选择性的同时,也可以有效地降低成本。目前,有望采用MOFs材料捕获CO2的场合包括发电厂的碳捕集、天然气中CH4/CO2的分离、交通工具排放的CO2的收集甚至直接从空气中捕获。因此,研发能够高效吸附分离CO2的MOFs材料对于缓解环境压力意义重大。
本文概括了CO2吸附模型的建立方法,提出了几种提高MOFs对CO2捕获量的策略。如提高开放金属位点的密度、掺杂金属或氮原子、调节孔径或进行氨基功能化以及合成MOFs复合材料等,并比较了不同方法对于改善低压条件下CO2吸附量的影响,有望将其应用于捕获燃烧后烟道气、汽车尾气以及其他小型排放源中的CO2
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙增智
薛程
宋莉芳
邱树君
褚海亮
夏永鹏
孙立贤
关键词:  金属有机骨架化合物(MOFs)  二氧化碳捕获  吸附分离    
Abstract: Energy and environment are the essential conditions for human survival and development, furthermore, the mutual coordination between them is a vital guarantee for social sustainable development. In recent years, the negative impact of fossil fuels on human survival has gra-dually attracted widespread attention from society. The greenhouse effect is mainly attributed to the release of CO2 from the burning of fossil fuel. Therefore, the development of efficient and environmental-friendly carbon capture and storage technologies in a low-carbon economy environment play a crucial role in energy recycling and environmental protection.
Utilizing the amine solutions for scrubbing and absorbing CO2 is one of the most commonly technologies for industrial capture and storage (CCS) (e.g., separating CO2 from flue gas of power plant flue gas), which can significantly reduce the CO2 emissions, but also increases the plant energy consumption by 25%~40%, hence leading to an increase in additional costs to a large extent. In addition, other disadvantages of amine scrubbing include corrosion of the equipment by the alkaline solution, loss of solvent, degradation of the amine caused by heat production, and difficulty of separation after capturing. Solid materials such as alkali metal ceramics, solid amines, layered double hydroxides or calcium-based adsorbents for high temperature absorption (chemisorption) are another method of capturing CO2, while the energy consumption and the sensitivity of water molecules and other components limit their scope of application. In addition, it is also a feasible method to selectively separate the mixed gases with different mechanisms by utilizing polymers or inorganic membranes, yet the membranes with high stability, high selectivity, and high throughput are hard to obtain, and it is necessary to ameliorate the membranes’ adsorption and separation and their selectivity. For solid adsorbents, the capture of CO2 by porous materials at high pressure is dominated by adsorptive interactions, while selective capture at low pressure or low CO2 concentrations is primarily influenced by the interaction of adsorbents and a chemical affinity to CO2.
Metal organic frameworks (MOFs) exhibit tremendous potential for gas adsorption, especially for CO2 capture, due to their high crystallinity, high specific surface area and tunable pore structure. Compared with other solid adsorbents, such as activated carbon, zeolites, MOFs have higher adsorption selectivity. Applying it to the carbon capture and storage technology can dramatically broaden the range of CO2 adsorbents, increase the adsorption selectivity, meanwhile, effectively reduce the costs. Currently, MOFs are expected to capture CO2 in power plants, separation of CH4/CO2 in natural gas, CO2 collection from vehicles, and even direct capture from the air. Therefore, the development of MOFs mate-rials capable of efficiently adsorbing and separating CO2 is of great significance for relieving environmental stress.
This paper summarizes the establishment of CO2 adsorption model and proposes several methods to improve the adsorption capacity of CO2, such as increasing the density of open metal sites, doping metal or nitrogen atoms, adjusting their pore size or amino-functionalization, and synthesizing MOFs composite materials, and compared the effects of different methods on the adsorption capacity of CO2 under low pressure. In addition, they are expected to be applied to the capture of CO2 in post-combustion flue gas, vehicle exhaust and other small emission sources.
Key words:  metal-organic frameworks (MOFs)    carbon dioxide capture    adsorptive separation
               出版日期:  2019-02-10      发布日期:  2019-02-13
ZTFLH:  O611.4  
基金资助: 国家自然科学基金(51502021);陕西自然科学基金(2017JQ2025);广西信息材料重点实验室开放基金(151001-K)
作者简介:  孙增智,2010年毕业于长安大学,获得博士学位。主要研究领域为功能材料的制备及应用。宋莉芳,2011年毕业于中科院大连化物所,获得博士学位。目前主要研究领域为金属有机骨架材料的设计制备及气体存储。slf@chd.edu.cn
引用本文:    
孙增智, 薛程, 宋莉芳, 邱树君, 褚海亮, 夏永鹏, 孙立贤. 金属有机骨架化合物的二氧化碳吸附性能的研究进展[J]. 材料导报, 2019, 33(3): 541-549.
SUN Zengzhi, XUE Cheng, SONG Lifang, QIU Shujun, CHU Hailiang, XIA Yongpeng, SUN Lixian. Research Progress on Improving the Capture of Carbon Dioxide by Metal-Organic Frameworks. Materials Reports, 2019, 33(3): 541-549.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201903022  或          http://www.mater-rep.com/CN/Y2019/V33/I3/541
1 Panella B, Hirscher M, Pütter H, et al. Advanced Functional Materials,2006,16(4),520.
2 Macgillivray L R. Applied Organometallic Chemistry,2010,26(6),320.
3 Hoskins B F, Robson R. Journal of the American Chemical Society,1990,112(4),1199.
4 Kitagawa H, Van d P J. Science,1998,279(5354), 1187.
5 Cendrowski K, Skumial P, Spera P, et al. Materials & Design,2016,110,740.
6 Li Y, Yang R T. Langmuir: the ACS Journal of Surfaces & Colloids,2007,23(26),12937.
7 Furukawa H, Ko N, Yong B G, et al. Science,2010,329(5990),424.
8 Xie W, Wan F. Fuel,2018,220,248.
9 Wang Y, Zhou S, Vecchio K S. Materials Science & Engineering A,2016,665,47.
10 Li J R, Sculley J, Zhou H C. Chemical Reviews,2012,112(2),869.
11 Férey G. Chemical Society Reviews,2008,37(1),191.
12 Silva P, Vilela S M, Tomé J P, et al. Chemical Society Reviews,2015,44(19),6774.
13 Lan H, Pan D, Sun Y, et al. Analytica Chimica Acta,2016,937,53.
14 Khan N A, Jhung S H. Coordination Chemistry Reviews,2015,285,11.
15 Zou F, Yu R, Li R, et al. Chemphyschem A European Journal of Chemical Physics & Physical Chemistry,2013,14(12),2825.
16 Zhang W, Jiang X, Wang X, et al. Angewandte Chemie International Edin English,2017,129(29),8435.
17 Lin Y, Kong C, Zhang Q, et al. Advanced Energy Materials,2017,7(4),1601296.
18 Tu T N, Nguyen M V, Nguyen H L, et al. Coordination Chemistry Reviews,2018,364,33.
19 Wu M M, Wang J Y, Sun R, et al. Inorganic Chemistry,2017,56(16),9555.
20 Rosi N L, Eckert J, Eddaoudi M, et al. Science,2003,300(5622),1127.
21 Kim H R, Yoon T U, Kim S I, et al. RSC Advances,2017,7(3),1266.
22 Li B, Chen B. Chemistry An Asian Journal,2016,9(6),1474.
23 Zhou H C, Long J R, Yaghi O M. Chemical Reviews,2012,112(2),673.
24 Rochelle G T. Science,2009,325(5948),1652.
25 Srinivas G, Burress J, Yildirim T. Energy & Environmental Science,2012,5(4),6453.
26 Mcdonald T M, D’Alessandro D M, Krishna R, et al. Chemical Science,2011,2(10),2022.
27 Dinca M, Long J R. Angewandte Chemie,2008,47(36),6766.
28 Myers A L, Prausnitz J M. AiChE Journal,1965,11(1),121.
29 Richter E, Wilfried S, Myers A L. Chemical Engineering Science,1989,44(8),1609.
30 Mathias P M, Ravi Kumar, Jr J D M, et al. Industrial & Engineering Chemistry Research,1996,35(7),107.
31 Sips R. Journal of Chemical Physics,1950,18(8),1024.
32 Mason J A, Sumida K, Herm Z R, et al. Energy & Environmental Science,2011,4(8),3030.
33 Luu C L, Nguyen T T V, Nguyen T, et al. Advances in Natural Sciences Nanoscience & Nanotechnology,2018,9(1),015003.
34 Tang G H.Functionalization of metal-organic frameworks and their application in CO2 capture and conversion. Master’s thesis, Taiyuan University of Technology,China,2017(in Chinese).
汤国辉.金属有机骨架材料的功能化及其对二氧化碳捕获及转化性能的研究.硕士学位论文,太原理工大学,2017.
35 Li C, Wang Y X, Meng F C, et al. Natural Gas Chemical Industry,2015(1),24(in Chinese).
李超,王亦修,孟凡超,等.天然气化工,2015(1),24.
36 Chaemchuen Somboon, Zhou K, Yao C,et al. Chinese Journal of Applied Chemistry,2015,32(5),552(in Chinese).
Chaemchuen Somboon,周奎,姚宸,等.应用化学,2015,32(5),552.
37 Liu Y Y, Huang Y, He J J,et al. Journal of Chemical Industry and Engineering,2015,66(11),4469(in Chinese).
刘有毅,黄艳,何嘉杰,等.化工学报,2015,66(11),4469.
38 Lin J F, Su Y, Xiao J,et al. Journal of Functional Materials,2014,45(9),38(in Chinese).
林俭锋,苏叶,肖静,等.功能材料,2014,45(9),38.
39 Biswas S, Voort P V D. European Journal of Inorganic Chemistry,2013,2013(12),2154.
40 Huang A, Liu Q, Wang N, et al. Journal of the American Chemical Society,2014,136(42),14686.
41 Liu S. Studies on structure and gases storage of graphene-metal organic frameworks composites. Doctor’s thesis, University of Chinese Academy of Sciences, China,2014(in Chinese).
刘双.石墨烯-金属有机框架复合材料结构及气体吸附性能研究.博士学位论文,中国科学院大学,2014.
42 Caskey S R, Wongfoy A G, Matzger A J. Journal of the American Chemical Society,2008,130(33),10870.
43 Bahamon D, Vega L F. Chemical Engineering Journal,2016,284,438.
44 Poloni R, Lee K, Berger R F, et al. Journal of Physical Chemistry Letters,2014,5(5),861.
45 Yan X, Komarneni S, Zhang Z, et al. Microporous & Mesoporous Mate-rials,2014,183(183),69.
46 Chowdhury P, Mekala S, Dreisbach F, et al. Microporous & Mesoporous Materials,2012,152(4),246.
47 Liu K, Li B, Li Y, et al. Chemical Communications,2014,50(39),5031.
48 Zheng B, Bai J, Duan J, et al. Journal of the American Chemical Society,2011,133(4),748.
49 Ahrenholtz S R, Landaverdealvarado C, Whiting M, et al. Inorganic Chemistry,2015,54(9),4328.
50 Palomino C C, Arean C O, Parra J B, et al. Dalton Transactions,2015,44(21),9955.
51 Chaemchuen Somboon, Zhou K, Yao C, et al. Chinese Journal of Inorganic Chemistry,2015,31(3),509(in Chinese).
Chaemchuen Somboon,周奎,姚宸,等.无机化学学报,2015,31(3),509.
52 Zhen W, Ma J, Lu G. Applied Catalysis B Environmental,2016,190,12.
53 Chaemchuen S, Zhou K, Kabir N A, et al. Microporous & Mesoporous Materials,2015,201,277.
54 Lau C H, Babarao R, Hill M R. Chemical Communications,2013,49(35),3634.
55 Park H J, Suh M P. Chemical Communications,2010,46(4),610.
56 Landaverde-Alvarado C, Morris A J, Martin S M. Journal of CO2 Utilization,2017,19,40.
57 Seth S, Savitha G, Moorthy J N. Inorganic Chemistry,2015,54(14),6829.
58 Bao S J, Krishna R, He Y B, et al. Journal of Materials Chemistry A,2015,3(14),7361.
59 Pachfule P, Das R, Poddar P, et al. Crystal Growth & Design,2011,11(4),1215.
60 Nie B, Hu J G, Luo L B, et al. Small,2013,9(17),2872.
61 Hu X L, Qin C, Zhao L, et al. RSC Advances,2015,5(61),49606.
62 Nandi S, Luna P D, Daff T D, et al. Science Advances,2015,1(11),e1500421.
63 Wang X J, Li P Z, Liu L, et al. Chemical Communications,2012,48(83),10286.
64 Li J, Li P Z, Li Q Y, et al. RSC Advances,2014,4(96),53975.
65 Li P Z, Wang X J, Zhang K, et al. Chemical Communications,2014,50(36),4683.
66 Li P Z, Wang X J, Liu J, et al. Journal of the American Chemical Society,2016,138(7),2142.
67 Rada Z H, Abid H R, Shang J, et al. Fuel,2015,160,318.
68 Zhang Z. Energy & Environmental Science,2014,7(9),2868.
69 Hwang Y K, Hong D Y, Chang J S, et al. Applied Catalysis A General,2009,358(2),249.
70 Demessence, D’Alessandro, Foo, et al. Journal of the American Chemical Society,2009,131(25),8784.
71 Lee K, Howe J D, Lin L C, et al. Chemistry of Materials,2015,27(3),668.
72 Hu Y, Verdegaal W M, Yu S H, et al. Chemsuschem,2014,7(3),734.
73 Martínez F, Sanz R, Orcajo G, et al. Chemical Engineering Science,2016,142,55.
74 Lin Y, Yan Q, Kong C, et al. Scientific Reports,2013,3(5),1859.
75 Huang Q, Ding J, Huang X, et al. Energy Procedia,2017,105,4395.
76 Liang W, Babarao R, Church T L, et al. Chemical Communications,2015,51(56),11286.
77 Shekhah O, Belmabkhout Y, Adil K, et al. Chemical Communications,2015,51(71),13595.
78 Shekhah O, Belmabkhout Y, Chen Z, et al. Nature Communications,2014,5,4228.
79 Orcajo G, Calleja G, Botas J A, et al. Crystal Growth & Design,2014,14(2),739.
80 Nandi S, Luna P D, Daff T D, et al. Science Advances,2015,1(11),e1500421.
81 Carrington E J, Mcanally C A, Fletcher A J, et al. Nature Chemistry,2017,9(9),882.
82 Chung Y G, Gómezgualdrón D A, Li P, et al. Science Advances,2016,2(10),e1600909.
83 Hu Z, Peng Y, Kang Z, et al. Inorganic Chemistry,2015,54(10),4862.
84 Mondal S S, Bhunia A, Baburin I A, et al. Chemical Communications,2013,49(69),7599.
85 Wriedt M, Sculley J P, Yakovenko A A, et al. Angewandte Chemie,2012,51(39),9804.
86 Li J R, Yu J, Lu W, et al. Nature Communications,2013,4(2),1538.
87 Liu S, Sun L, Xu F, et al. Energy & Environmental Science,2013,6(3),818.
88 Zhao Y, Zhong Q, et al. ACS Applied Materials & Interfaces,2014,6(1),101.
89 Chen B, Yang Z, Zhu Y, et al. Journal of Materials Chemistry A,2014,2(40),16811.
90 Zhou X, Huang W, Miao J, et al. Chemical Engineering Journal,2014,266,339.
91 Pourebrahimi S, Kazemeini M, Babakhani E G, et al. Microporous & Mesoporous Materials,2015,218,144.
92 Bian Z, Xu J, Zhang S, et al. Langmuir: the ACS Journal of Surfaces & Colloids,2015,31(26),7410.
93 Chen Y, Lyu D, Wu J, et al. Chemical Engineering Journal,2016,308,1065.
94 Adhikari A K, Lin K S. Chemical Engineering Journal,2016,284(10),1348.
95 Yang Y, Ge L, Rudolph V, et al. Dalton Transactions,2014,43(19),7028.
96 Iqbal N, Wang X, Yu J, et al. RSC Advances,2016,6(6),4382.
97 Su Y, Zhang Z, Liu H, et al. Applied Catalysis B Environmental,2017,200,448.
98 Tari N E, Tadjarodi A, Tamnanloo J, et al. Microporous & Mesoporous Materials,2016,231,154.
99 Chakraborty A, Maji T K. APL Materials,2014,2(12),673.
100 Yoo J, Lee S, Lee C, et al. RSC Advances,2014,4(91),49614.
101 Ying Y, Xiao Y, Ma J, et al. RSC Advances,2015,5(36),28394.
102 Hu Y L. Synthesis and functional applications of stable metal-organic frameworks. Master’s thesis, University of Science and Technology of China, China,2016(in Chinese).
胡应立.稳定金属有机骨架材料的合成与功能应用研究.硕士学位论文,中国科学技术大学,2016.
[1] 马应霞, 金朋生, 邵文杰, 寇亚兰, 喇培清. 表面接枝端羟基聚酰胺-胺的磁性氧化石墨烯对Hg(Ⅱ)的吸附性能[J]. 材料导报, 2019, 33(2): 234-239.
[2] 赵博,纪妍妍,张兵,王冬梅,张纪梅. 湿凝胶晶化法高效合成X型沸石及其离子交换性能研究*[J]. 材料导报编辑部, 2017, 31(10): 47-50.
[3] 常梦洁,刘俊,杜慧玲. 还原氧化石墨烯-贵金属纳米复合物的制备及表征*[J]. 材料导报编辑部, 2017, 31(10): 112-115.
[4] 彭红,刘洋,张锦胜,郑洪立,阮榕生. 基于毛竹半纤维素的银纳米粒子的绿色合成*[J]. 材料导报编辑部, 2017, 31(22): 35-42.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed