Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 112-115    https://doi.org/10.11896/j.issn.1005-023X.2017.010.023
  材料研究 |
还原氧化石墨烯-贵金属纳米复合物的制备及表征*
常梦洁,刘俊,杜慧玲
西安科技大学材料科学与工程学院, 西安 710054
Preparation and Characterization of Reduced Graphene Oxide-Noble Metal Nanocomposites
CHANG Mengjie, LIU Jun, DU Huiling
College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054
下载:  全 文 ( PDF ) ( 1154KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以氧化石墨和氯铂酸为前驱体,在油胺中简便地合成了还原氧化石墨烯-铂(Reduced graphene oxide-platinum, rGO-Pt)纳米复合物,并对其进行了表征。透射电子显微镜和光谱测试结果表明,铂纳米颗粒均匀分布在石墨烯表面,尺寸约为30 nm,铂纳米粒子为多孔隙结构,结晶性能良好,氧化石墨在高温下转变为还原氧化石墨烯。用此方法也可以制备还原氧化石墨烯-金(rGO-Au)或还原氧化石墨烯-银(rGO-Ag)的纳米复合物,金、银纳米颗粒呈球状,对可见光具有明显的表面等离子吸收。同时,油胺作为溶剂、贵金属盐的还原剂和表面活性剂,使制备过程简单、快捷。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
常梦洁
刘俊
杜慧玲
关键词:  石墨烯  铂纳米粒子  纳米复合物  高温合成    
Abstract: Reduced graphene oxide-platinum (rGO-Pt) nanocomposites were produced by high temperature synthetic process from the graphene oxide and H2PtCl6. Transmission electron microscopy and micro-spectrum results showd that Pt nanoparticles with a average diameter of 30 nm were uniformly distributed on the rGO surface. The Pt nanoparticles had porous structure with good crystallinity. GO was transferred to rGO at high temperature. With the similar method, rGO-Au or rGO-Ag nanocomposites could also be prepared, and the resulted composites exhibit typical surface plasmon resonance adsorption against visible light. In this method, oleylamine acted as solvent, reduction agent for metal salt and surfactant simultaneously. The synthetic process is simple, rapid, and has wide practical application prospect.
Key words:  graphene    Pt nanoparticles    nanocomposites    high temperature synthesis
                    发布日期:  2018-05-08
ZTFLH:  O611.4  
基金资助: *国家自然科学基金(21403165;21501140;51372197);陕西省自然科学基础研究计划项目(2015JQ2047;2016JQ2002);陕西省教育厅项目(15JK1453)
作者简介:  常梦洁:1987年生,博士,讲师,主要研究方向为有机无机杂化材料E-mail:mengjie_chang@xust.edu.cn
引用本文:    
常梦洁,刘俊,杜慧玲. 还原氧化石墨烯-贵金属纳米复合物的制备及表征*[J]. 材料导报编辑部, 2017, 31(10): 112-115.
CHANG Mengjie, LIU Jun, DU Huiling. Preparation and Characterization of Reduced Graphene Oxide-Noble Metal Nanocomposites. Materials Reports, 2017, 31(10): 112-115.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.023  或          http://www.mater-rep.com/CN/Y2017/V31/I10/112
1 Shen X, Wang Z, Wu Y, et al. Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites [J]. Nano Lett,2016,16(6):3585.
2 Mao H Y, Laurent S, Chen W, et al. Graphene: Promises, facts, opportunities, and challenges in nanomedicine [J]. Chem Rev,2013,113(5):3407.
3 Georgakilas V, Tiwari J N, Kemp K C, et al. Noncovalent functio-nalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications [J]. Chem Rev,2016,116(9):5464.
4 Li N, Cao M, Hu C. Review on the latest design of graphene-based inorganic materials [J]. Nanoscale,2012,4(20):6205.
5 Xiao C, Goh T W, Qi Z, et al. Conversion of levulinic acid to γ-valerolactone over few-layer graphene-supported ruthenium catalysts [J]. ACS Catal,2016,6(2):593.
6 Sarno M, Cirillo C, Scudieri C, et al. Electrochemical applications of magnetic core-shell graphene-coated feco nanoparticles [J]. Ind Eng Chem Res,2016,55(11):3157.
7 Huisman E H, Shulga A G, Zomer P J, et al. High gain hybrid graphene-organic semiconductor phototransistors [J]. ACS Appl Mater Interf,2015,7(21):11083.
8 Ni Y, Chen L, Teng K, et al. Superior mechanical properties of epoxy composites reinforced by 3D interconnected graphene skeleton [J]. ACS Appl Mater Interface,2015,7(21):11583.
9 Qi L, Xin Y, Zuo Z, et al. Grape-like Fe3O4 agglomerates grown on graphene nanosheets for ultrafast and stable lithium storage [J]. ACS Appl Mater Interface,2016,8(27):17245.
10 Du T, Zhang H D, Fan T X. Recent progress on graphene/metal composites [J]. Mater Rev:Rev,2015,29(3):121(in Chinese).
独涛, 张洪迪, 范同祥. 石墨烯/金属复合材料的研究进展 [J]. 材料导报:综述篇,2015,29(3):121.
11 Shang N, Papakonstantinou P, Wang P, et al. Platinum integrated graphene for methanol fuel cells [J]. J Phys Chem C,2010,114:15837.
12 Qiu J D, Wang G C, Liang R P, et al. Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells [J]. J Phys Chem C,2011,115(31):15639.
13 Yoo E, Okata T, Akita T, et al. Enhanced electrocatalytic activity of pt subnanoclusters on graphene nanosheet surface [J]. Nano Lett,2009,9(6):2255.
14 Yang Zijuan,Zhao Mengxi,Chen Sen, et al. Platinum-palladium bimetallic nanospheres supported on graphene nanosheets as enhanced electrocatalyst formethanol oxidation [J]. Chem Res,2014,3:273.
15 Du C, Hei X Z, Luo W, et al. Synthesis of 3D nitrogen-doped graphene supported AgPd nanocatalysts and application in catalytic dehydrogenation of formic acid for chemical hydrogen storage[J]. Sci Sin Chim,2016,46(5):487(in Chinese).
杜成, 黑秀泽, 罗威,等. N掺杂石墨烯负载AgPd纳米催化剂室温高效催化甲酸分解制氢 [J].中国科学,2016,46(5):487.
16 Kellici S, Acord J, Vaughn A, et al. Calixarene assisted rapid synthesis of silver-graphene nanocomposites with enhanced antibacterial activity [J]. ACS Appl Mater Interface,2016,8(29):19038.
17 Kumar D, Lee A, Lee T, et al. Ultrafast and efficient transport of hot plasmonic electrons by graphene for Pt free, highly efficient visible-light responsive photocatalyst [J]. Nano Lett,2016,16(3):1760.
18 Navalon S, Dhakshinamoorthy A, Alvaro M, et al. Metal nanoparticles supported on two-dimensional graphenes as heterogeneous ca-talysts [J]. Coord Chem Rev,2016,312:99.
19 Luo Y, Kong F Y, Li C, et al. One-pot preparation of reduced graphene oxide-carbon nanotube decorated with Au nanoparticles based on protein for non-enzymatic electrochemical sensing of glucose [J]. Sens Actuators B,2016,234:625.
20 Rao D, Sheng Q, Zheng J. Preparation of flower-like Pt nanoparticles decorated chitosan-grafted graphene oxide and its electrocatalysis of hydrazine [J]. Sens Actuators B,2016,236:192.
21 Yin P T, Shah S, Chhowalla M, et al. Design, synthesis,and chara-cterization of graphene-nanoparticle hybrid materials for bioapplications [J]. Chem Rev,2015,115(7):2483.
22 An’amt Mohamed Noor P R, Norazriena Yusoff, Huang Nay Ming, et al. Microwave synthesis of reduced graphene oxide decorated with silver nanoparticles for electrochemical determination of 4-nitrophenol [J]. Ceram Int,2016, doi.org/10.1016/j.ceramint.2016.09.026
23 Xin L, Yang F, Rasouli S, et al. Understanding Pt nanoparticle anchoring on graphene supports through surface functionalization [J]. ACS Catal,2016,6(4):2642.
24 Lee Y H, Polavarapu L, Gao N, et al. Enhanced optical properties of graphene oxide-Au nanocrystal composites [J]. Langmuir,2012,28(1):321.
25 Mayavan S, Sim J B, Choi S M. Simultaneous reduction, exfoliation and functionalization of graphite oxide into a graphene-platinum na-noparticle hybrid for methanol oxidation [J]. J Mater Chem,2012,22(14):6953.
26 De I P P, Multigner M, et al. Structural and magnetic characterization of oleic acid and oleylamine-capped gold nanoparticles [J]. J Appl Phys,2006,100(12):123915.
27 Li F, Du X Y, Yang R C. Synthesis of monodisperse Fe3O4 magnetite schistic hexagonal nanocrystals by polyol reduction method [J]. Chemical J Chinese Universities,2011,32(8):1688(in Chinese).
李芳, 杜雪岩, 杨瑞成. 多元醇还原法制备片状六边形Fe3O4纳米颗粒 [J]. 高等学校化学学报,2011,32(8):1688.
28 Wang C, Yin H, Chan R, et al. One-pot synthesis of oleylamine coated AuAg alloy NPs and their catalysis for CO oxidation [J]. Chem Mater,2009,21(3):433.
29 Polavarapu L, Venkatram N, Ji W, et al. Optical-limiting properties of oleylamine-capped gold nanoparticles for both femtosecond and nanosecond laser pulses [J]. ACS Appl Mater Interface,2009,1(10):2298.
30 Liu J, Chang M J, Gou X C, et al. One-step synthesis of antibody-stabilized aqueous colloids of noble metal nanoparticles [J]. Colloids Surf A,2012,404(404):112.
31 Kavitha H J M K, Gopinath P, Philip R. Synthesis of reduced graphene oxide-ZnO hybrid with enhanced optical limiting properties [J]. J Mater Chem,2013,1(23):3669.
32 Mourdikoudis S, Liz-Marzán L M. Oleylamine in nanoparticle synthesis [J]. Chem Mater,2013,25(9):1465.
[1] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[4] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[5] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[6] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[7] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[8] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[9] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[10] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[11] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[12] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[13] 马李璇, 李凯, 宁平, 梅毅, 王驰, 孙鑫. 石墨烯在水环境中的转化和降解行为研究进展[J]. 材料导报, 2019, 33(3): 395-401.
[14] 王胜涛, 卢维尔, 王桐, 夏洋. PMMA/PVA双支撑膜辅助铜刻蚀法:一种改进的石墨烯转移技术[J]. 材料导报, 2019, 33(2): 230-233.
[15] 马应霞, 金朋生, 邵文杰, 寇亚兰, 喇培清. 表面接枝端羟基聚酰胺-胺的磁性氧化石墨烯对Hg(Ⅱ)的吸附性能[J]. 材料导报, 2019, 33(2): 234-239.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed