Please wait a minute...
材料导报  2021, Vol. 35 Issue (18): 18109-18115    https://doi.org/10.11896/cldb.20070265
  金属与金属基复合材料 |
Nb-Ti-Co氢分离合金的显微组织和耐腐蚀性能
狄翀博1, 王金华1, 闫二虎1, 王星粤1, 陈运灿1, 贾丽敏2, 徐芬1, 孙立贤1
1 桂林电子科技大学广西信息材料重点实验室, 桂林 541004
2 河北科技大学材料科学与工程学院,石家庄 150001
Microstructure and Corrosion Resistance of Nb-Ti-Co Hydrogen Separation Alloy
DI Chongbo1, WANG Jinhua1, YAN Erhu1, WANG Xingyue1, CHEN Yuncan1, JIA Limin2, XU Fen1, SUN Lixian1
1 Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China
2 School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 150001, China
下载:  全 文 ( PDF ) ( 15319KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前,传统商业用氢分离合金Pd膜资源稀缺且价格昂贵,亟待开发新型氢分离合金膜,Nb-Ti-Co合金可以很好地满足上述要求。不过,上述合金膜过滤的混合气体中常常混有少量的酸性气体,如CO2、H2S和HCl等,对合金膜造成不同程度的腐蚀。到目前为止,关于氢分离合金膜耐腐蚀性能的研究鲜有报道,合金组织和耐腐蚀性能之间的关系尚未建立。基于此,本工作针对Nb-Ti-Co氢分离合金的显微组织和耐腐蚀性能开展了一系列研究,首先利用扫描电镜(SEM)和X射线衍射(XRD)等设备研究了合金显微组织结构,得出其与合金成分之间的本征关系;其次,通过一系列电化学实验测量了上述合金膜的耐腐蚀性能,阐明了其随合金成分和组织(或相结构)变化的变化规律;最后,利用X射线电子能谱(XPS)等设备分析了合金腐蚀后表面元素的价态变化,提出了Nb-Ti-Co合金的耐腐蚀机理。结果表明:除Nb30Ti35Co35合金之外,其他合金均由初生α-Nb相和共晶相(α-Nb+TiCo)构成,并且,前者体积分数随着Nb含量和Ti/Co比率的增加而增加,后者随之降低;伴随上述变化,腐蚀电流(I_corr)逐渐增加,相反,腐蚀电压(E_corr)逐渐减小,上述二者与初生Nb相体积分数之间的关系分别为:E_corr=-0.252 59-1.308 18×10-4 eVbcc-Nb/-11.015 88和I_corr=2.101 47+3.515 36×10-5 eVbcc-Nb/-3.945 97。另外,腐蚀后Nb、Ti和Co元素易于在合金表面富集并生成Nb2O5、TiO2和CoO氧化层,并伴随着氧化还原、析氢和复分解反应,促进腐蚀的进一步发生,上述反应过程首次揭示了高Nb含量合金耐腐蚀性能相对较弱的根本原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
狄翀博
王金华
闫二虎
王星粤
陈运灿
贾丽敏
徐芬
孙立贤
关键词:  Nb-Ti-Co氢分离合金  显微组织  耐腐蚀性能    
Abstract: Nowadays, the traditional commercial hydrogen separation alloy Pd membrane resources are scarce and expensive, so it is urgent to deve-lop a new hydrogen separation alloy membrane. Nb-Ti-Co alloy can meet the above requirements well. Nevertheless, the mixed gases filtered by the alloy membranes are often mixed with a small amount of acid gases, such as CO2,H2S and HCl, which cause varying degrees of corrosion to the alloy membranes. So far, there have been few reports on the corrosion resistance of hydrogen separation alloy films, and the relationship between alloy microstructure and corrosion resistance has not been established. The microstructure and corrosion resistance of Nb-Ti-Co hydrogen separation alloy were studied in this paper. Firstly, the microstructure of the alloy was studied by means of SEM and XRD; secondly, the corrosion resistance of the alloy film was measured by a series of electrochemical experiments, and the variation of the film with the alloy composition and microstructure (or phase structure) was clarified; lastly, the change of the valence state of the surface elements after corrosion is analyzed by using XPS and other equipment, and their corrosion resistance mechanism is put forward. The results show that all the alloys except Nb30Ti35Co35 are composed of primary α-Nb phase and eutectic phase (α-Nb+TiCo), and the volume fraction of the former increases with the increase of Nb content and Ti/Co ratio, and the latter decreases. Along with the above changes, the corrosion current of the alloy increases gradually, on the contrary, the corrosion voltage decreases gradually. The relationship between the above two and the integral number of the primary Nb phase is as follows, E_corr=-0.252 59-1.308 18×10-4 eVbcc-Nb/-11.015 88 and I_corr=2.101 47+3.515 36×10-5 eVbcc-Nb/-3.945 97.Moreover, this is due to the easy enrichment of Nb, Ti and Co elements on the alloy surface after corrosion and the formation of Nb2O5,TiO2 and CoO oxide layers, accompanied by redox, hydrogen evolution and double decomposition reactions, which promote the further occurrence of corrosion. the above reaction process for the first time reveals the root cause of the relatively weak corrosion resistance of high Nb content alloys.
Key words:  Nb-Ti-Co hydrogen separation alloy    microstructure    corrosion resistance
               出版日期:  2021-09-25      发布日期:  2021-09-30
ZTFLH:  TG139  
基金资助: 国家自然科学基金项目(52161034;51761009);广西自然科学基金项目(2020GXNSFAA159163);桂林电子科技大学研究生教育创新计划项目(2019YCXS109);广西信息材料重点实验室基金项目(191021-Z)资助
作者简介:  狄翀博,2018年6月毕业于桂林电子科技大学,获得工学学士学位。现为桂林电子科技大学材料科学与工程学院硕士研究生,在闫二虎副教授的指导下进行研究,目前主要研究领域为新型渗氢合金/多元合金凝固理论。
闫二虎,桂林电子科技大学教授,硕士研究生导师。2009年7月本科毕业于河北科技大学,2011年7月和2014年7月在哈尔滨工业大学分别取得工学硕士学位和工学博士学位,毕业后在桂林电子科技大学工作,2018年11月至2019年11月获广西高校优秀教师出国留学深造项目资助,赴加拿大国家科学研究院信息-能源材料研究所进行为期1年的访学研究工作。主要从事合金定向凝固理论和新型能源材料方面的研究,近年来,在International Journal of Hydrogen Energy, Journal of Crystal Growth, International Journal of Materials Research,《金属学报》等刊物上发表SCI文章40余篇。
引用本文:    
狄翀博, 王金华, 闫二虎, 王星粤, 陈运灿, 贾丽敏, 徐芬, 孙立贤. Nb-Ti-Co氢分离合金的显微组织和耐腐蚀性能[J]. 材料导报, 2021, 35(18): 18109-18115.
DI Chongbo, WANG Jinhua, YAN Erhu, WANG Xingyue, CHEN Yuncan, JIA Limin, XU Fen, SUN Lixian. Microstructure and Corrosion Resistance of Nb-Ti-Co Hydrogen Separation Alloy. Materials Reports, 2021, 35(18): 18109-18115.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070265  或          http://www.mater-rep.com/CN/Y2021/V35/I18/18109
1 Zhang E T, Xie D L. Applied Chemical Industry, 2012(6),1067(in Chinese).
张二涛, 解东来.应用化工, 2012(6),1067.
2 Xu Z J, Wang Z M, Tang J L, et al. Journal of Alloys and Compounds, 2018, 740, 810.
3 Sai Q X. Shenhua Technology, 2016,1472(1),78(in Chinese).
赛庆新. 神华科技, 2016,1472(1),78.
4 Liu Y M. Chemical and Biological Engineering, 2007(3),79 (in Chinese).
刘一鸣.化学与生物工程, 2007(3),79.
5 Fu C G. Low Temperature and Special Gas, 2002, 20(3),22.
6 Hydrogen Energy Association.Hydrogen energy technology, Science Press, 2009.pp. 1 (in Chinese).
氢能协会. 氢能技术, 科学出版社, 2009.pp.1.
7 Sun Y, Su W, Zhou L.Hydrogen Fuel, Chemical Industry Press,2005(in Chinese).
孙艳, 苏伟, 周理. 氢燃料, 化学工业出版社, 2005.
8 Chen J, Zhu M.China Material Progress, 2009(5), 1 (in Chinese).
陈军, 朱敏. 中国材料进展, 2009(5), 1.
9 Yan E H, Huang H R, Min R N, et al. Materials Chemistry and Phy-sics, 2018, 212, 282.
10 Yan E H, Cheng J, Zhang K X, et al. Journal of Alloys and Compounds, 2021, 875, 160103.
11 Piskin F, Akyildiz H, ztürk H. International Journal of Hydrogen Energy, 2015, 40, 7553.
12 Lopez A, Melendez M J, Collins V. International Journal of Hydrogen Energy, 2016, 41, 23363.
13 Hashi K, Ishikawa K, Matasuda T, et al. Journal of Alloys and Compounds, 2004, 368, 215.
14 Dolan M D, Kellam M E, Mclenan K G, et al. International Journal of Hydrogen Energy, 2013, 38, 9794.
15 Magnone E, Jeon S, Parak J H, et al. Journal of Membrane Science, 2011, 384, 136.
16 Ishikawa K, Watanabe S, Aoki K. Journal of Alloys and Compounds, 2013, 566, 68.
17 Ishikawa K, Takano T, Matsuda T, et al. Applied Physics Letters, 2005, 87(8), 315.
18 Kamakpto P, Sholl D S. Journal of Membrane Science, 2006, 279, 94.
19 Yan E H, Li X Z, Liu D M, et al. International Journal of Hydrogen Energy, 2014, 39(16), 8385.
20 Liu Z W, Wang Z M, Liu F, et al. Rare Metal Materials and Enginee-ring,2011,40(6),1033 (in Chinese).
刘战伟, 王仲民, 刘菲, 等.稀有金属材料与工程, 2011, 40(6), 1033.
21 Li X Z, Yan E H, Rettenmayr M, et al. International Journal of Hydrogen Energy, 2014, 39, 9366.
22 Min R N, Yan E H, Huang H R, et al. Chinese Journal of Nonferrous Metals ,2018, 28(12), 2457 (in Chinese).
闵若男, 闫二虎, 黄浩然, 等. 中国有色金属学报, 2018, 28(12), 2457.
23 Yan E H, Huang H R, Sun S H, et al. Journal of Membrane Science, 2018, 565, 411.
24 Amano M, Nishimura C, Komaki M. Materials Transactions, 1990, 31(5), 404.
25 Li A, Liang W, Hughes R. Journal of Membrane Science, 2000, 165(1), 135.
26 Hulme J, Komaki M, Nishimura C, et al. Current Applied Physics, 2011, 11, 972.
27 Hou K, Hughes R. Journal of Membrane Science, 2002, 206(1-2), 119.
28 Yang J Y, Nishimura C, Komaki M. Journal of Membrane Science, 2008, 309(1-2), 246.
29 Yan E H, Huang H R, Min R N, et al. International Journal of Hydrogen Energy, 2018, 43, 14466.
30 Song D W, Wang Y J, Liu Y, et al. Journal of rare earths, 2008, 26, 398.
31 Hashi K, Ishikawa K, Matsuda T, et al. Journal of Alloys and Compounds, 2006, 425, 284.
32 Luo W, Ishikawa K, Aoki K. International Journal of Hydrogen Energy, 2012, 37(22), 12793.
33 Huang H R, Yan E H, Min R N, et al. Chinese Journal of Nonferrous Metals, 2018, 28(10), 2058 (in Chinese).
黄浩然, 闫二虎, 闵若男, 等.中国有色金属学报, 2018, 28(10), 2058.
34 Jin Z H, Ge H H, Lin W W, et al. Applied Surface Science, 2014, 322, 47.
35 Losiewicz B, Kubisztal J. International Journal of Hydrogen Energy, 2018, 43, 20004.
36 Yan E H, Min R N, Huang H R, et al. International Journal of Hydrogen Energy, 2019, 44(31), 16684.
37 Yan E H, Li X Z, Tang P, et al. Journal of Metals, 2014, 50(1), 71 (in Chinese).
闫二虎, 李新中, 唐平, 等.金属学报, 2014, 50(1), 71.
38 Yan E H, Li X Z, Rettenmayr M, et al. International Journal of Hydrogen Energy, 2014, 39, 3505.
39 Yan E H, Huang H R, Min R N, et al. Materials Chemistry and Physics, 2018, 212, 282.
40 Ishikawa K, Habaguchi H, Obata N, et al. International Journal of Hydrogen Energy, 2016, 41, 5269.
41 Wan Q L, Zhang L, Wang Z, et al. Cemented Carbide, 2014, 31(4), 202 (in Chinese).
万庆磊, 张立, 王喆, 等.硬质合金, 2014, 31(4), 202.
[1] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[2] 封帆, 王美玲, 李振华, 陆永浩. 超超临界机组用HR3C奥氏体耐热钢研究进展[J]. 材料导报, 2021, 35(9): 9186-9195.
[3] 肖奇, 孙文磊, 刘金朵, 黄海博. Ni60A/WC激光熔覆涂层表面抗蚀行为[J]. 材料导报, 2021, 35(8): 8146-8150.
[4] 翟建树, 李春燕, 田霖, 卢煜, 寇生中. Fe基非晶涂层耐腐蚀性能的影响因素及提升措施综述[J]. 材料导报, 2021, 35(3): 3129-3140.
[5] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[6] 韩善果, 杨永强, 罗子艺, 蔡得涛, 郑世达. 线能量对铝/钢双光束激光焊接接头组织及性能的影响[J]. 材料导报, 2021, 35(2): 2109-2114.
[7] 陈帅, 陶凤和, 贾长治, 孙河洋. 选区激光熔化成型4Cr5MoSiV1钢的组织与性能优化[J]. 材料导报, 2021, 35(16): 16126-16132.
[8] 杨平, 毛育青, 李芊芃, 何良刚, 柯黎明. 合金元素对Cu/Sn-/Cu回流焊焊点界面微观结构及剪切性能的影响[J]. 材料导报, 2021, 35(14): 14156-14160.
[9] 方振兴, 祁文军, 李志勤. 304不锈钢激光熔覆搭接率对CoCrW涂层组织与耐磨及耐腐蚀性能的影响[J]. 材料导报, 2021, 35(12): 12123-12129.
[10] 杨文涛, 何鹏飞, 刘明, 周永欣, 王海斗, 马国政, 白宇. 快速凝固过共晶铝硅合金的显微组织及摩擦学行为研究现状[J]. 材料导报, 2021, 35(11): 11126-11136.
[11] 王蒙, 张冠星, 钟素娟, 程战, 李文彬. Mg对Sn-0.7Cu钎料组织及性能的影响[J]. 材料导报, 2021, 35(10): 10147-10151.
[12] 张欣雨, 毛小南, 王可, 陈茜. 典型α+β钛合金组织对静态和动态性能的影响[J]. 材料导报, 2021, 35(1): 1162-1167.
[13] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[14] 王力, 裴迪, 李新林, 裴志洋. 轧制ATZ331合金的显微组织与力学性能[J]. 材料导报, 2020, 34(Z2): 356-359.
[15] 梁广, 朱胜, 王文宇, 王晓明, 韩国峰, 任智强. 铝合金腐蚀防护技术研究现状及发展趋势[J]. 材料导报, 2020, 34(Z2): 429-436.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed