Microstructure and Corrosion Resistance of Nb-Ti-Co Hydrogen Separation Alloy
DI Chongbo1, WANG Jinhua1, YAN Erhu1, WANG Xingyue1, CHEN Yuncan1, JIA Limin2, XU Fen1, SUN Lixian1
1 Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China 2 School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 150001, China
Abstract: Nowadays, the traditional commercial hydrogen separation alloy Pd membrane resources are scarce and expensive, so it is urgent to deve-lop a new hydrogen separation alloy membrane. Nb-Ti-Co alloy can meet the above requirements well. Nevertheless, the mixed gases filtered by the alloy membranes are often mixed with a small amount of acid gases, such as CO2,H2S and HCl, which cause varying degrees of corrosion to the alloy membranes. So far, there have been few reports on the corrosion resistance of hydrogen separation alloy films, and the relationship between alloy microstructure and corrosion resistance has not been established. The microstructure and corrosion resistance of Nb-Ti-Co hydrogen separation alloy were studied in this paper. Firstly, the microstructure of the alloy was studied by means of SEM and XRD; secondly, the corrosion resistance of the alloy film was measured by a series of electrochemical experiments, and the variation of the film with the alloy composition and microstructure (or phase structure) was clarified; lastly, the change of the valence state of the surface elements after corrosion is analyzed by using XPS and other equipment, and their corrosion resistance mechanism is put forward. The results show that all the alloys except Nb30Ti35Co35 are composed of primary α-Nb phase and eutectic phase (α-Nb+TiCo), and the volume fraction of the former increases with the increase of Nb content and Ti/Co ratio, and the latter decreases. Along with the above changes, the corrosion current of the alloy increases gradually, on the contrary, the corrosion voltage decreases gradually. The relationship between the above two and the integral number of the primary Nb phase is as follows, E_corr=-0.252 59-1.308 18×10-4 eVbcc-Nb/-11.015 88 and I_corr=2.101 47+3.515 36×10-5 eVbcc-Nb/-3.945 97.Moreover, this is due to the easy enrichment of Nb, Ti and Co elements on the alloy surface after corrosion and the formation of Nb2O5,TiO2 and CoO oxide layers, accompanied by redox, hydrogen evolution and double decomposition reactions, which promote the further occurrence of corrosion. the above reaction process for the first time reveals the root cause of the relatively weak corrosion resistance of high Nb content alloys.
作者简介: 狄翀博,2018年6月毕业于桂林电子科技大学,获得工学学士学位。现为桂林电子科技大学材料科学与工程学院硕士研究生,在闫二虎副教授的指导下进行研究,目前主要研究领域为新型渗氢合金/多元合金凝固理论。 闫二虎,桂林电子科技大学教授,硕士研究生导师。2009年7月本科毕业于河北科技大学,2011年7月和2014年7月在哈尔滨工业大学分别取得工学硕士学位和工学博士学位,毕业后在桂林电子科技大学工作,2018年11月至2019年11月获广西高校优秀教师出国留学深造项目资助,赴加拿大国家科学研究院信息-能源材料研究所进行为期1年的访学研究工作。主要从事合金定向凝固理论和新型能源材料方面的研究,近年来,在International Journal of Hydrogen Energy, Journal of Crystal Growth, International Journal of Materials Research,《金属学报》等刊物上发表SCI文章40余篇。
引用本文:
狄翀博, 王金华, 闫二虎, 王星粤, 陈运灿, 贾丽敏, 徐芬, 孙立贤. Nb-Ti-Co氢分离合金的显微组织和耐腐蚀性能[J]. 材料导报, 2021, 35(18): 18109-18115.
DI Chongbo, WANG Jinhua, YAN Erhu, WANG Xingyue, CHEN Yuncan, JIA Limin, XU Fen, SUN Lixian. Microstructure and Corrosion Resistance of Nb-Ti-Co Hydrogen Separation Alloy. Materials Reports, 2021, 35(18): 18109-18115.
1 Zhang E T, Xie D L. Applied Chemical Industry, 2012(6),1067(in Chinese). 张二涛, 解东来.应用化工, 2012(6),1067. 2 Xu Z J, Wang Z M, Tang J L, et al. Journal of Alloys and Compounds, 2018, 740, 810. 3 Sai Q X. Shenhua Technology, 2016,1472(1),78(in Chinese). 赛庆新. 神华科技, 2016,1472(1),78. 4 Liu Y M. Chemical and Biological Engineering, 2007(3),79 (in Chinese). 刘一鸣.化学与生物工程, 2007(3),79. 5 Fu C G. Low Temperature and Special Gas, 2002, 20(3),22. 6 Hydrogen Energy Association.Hydrogen energy technology, Science Press, 2009.pp. 1 (in Chinese). 氢能协会. 氢能技术, 科学出版社, 2009.pp.1. 7 Sun Y, Su W, Zhou L.Hydrogen Fuel, Chemical Industry Press,2005(in Chinese). 孙艳, 苏伟, 周理. 氢燃料, 化学工业出版社, 2005. 8 Chen J, Zhu M.China Material Progress, 2009(5), 1 (in Chinese). 陈军, 朱敏. 中国材料进展, 2009(5), 1. 9 Yan E H, Huang H R, Min R N, et al. Materials Chemistry and Phy-sics, 2018, 212, 282. 10 Yan E H, Cheng J, Zhang K X, et al. Journal of Alloys and Compounds, 2021, 875, 160103. 11 Piskin F, Akyildiz H, ztürk H. International Journal of Hydrogen Energy, 2015, 40, 7553. 12 Lopez A, Melendez M J, Collins V. International Journal of Hydrogen Energy, 2016, 41, 23363. 13 Hashi K, Ishikawa K, Matasuda T, et al. Journal of Alloys and Compounds, 2004, 368, 215. 14 Dolan M D, Kellam M E, Mclenan K G, et al. International Journal of Hydrogen Energy, 2013, 38, 9794. 15 Magnone E, Jeon S, Parak J H, et al. Journal of Membrane Science, 2011, 384, 136. 16 Ishikawa K, Watanabe S, Aoki K. Journal of Alloys and Compounds, 2013, 566, 68. 17 Ishikawa K, Takano T, Matsuda T, et al. Applied Physics Letters, 2005, 87(8), 315. 18 Kamakpto P, Sholl D S. Journal of Membrane Science, 2006, 279, 94. 19 Yan E H, Li X Z, Liu D M, et al. International Journal of Hydrogen Energy, 2014, 39(16), 8385. 20 Liu Z W, Wang Z M, Liu F, et al. Rare Metal Materials and Enginee-ring,2011,40(6),1033 (in Chinese). 刘战伟, 王仲民, 刘菲, 等.稀有金属材料与工程, 2011, 40(6), 1033. 21 Li X Z, Yan E H, Rettenmayr M, et al. International Journal of Hydrogen Energy, 2014, 39, 9366. 22 Min R N, Yan E H, Huang H R, et al. Chinese Journal of Nonferrous Metals ,2018, 28(12), 2457 (in Chinese). 闵若男, 闫二虎, 黄浩然, 等. 中国有色金属学报, 2018, 28(12), 2457. 23 Yan E H, Huang H R, Sun S H, et al. Journal of Membrane Science, 2018, 565, 411. 24 Amano M, Nishimura C, Komaki M. Materials Transactions, 1990, 31(5), 404. 25 Li A, Liang W, Hughes R. Journal of Membrane Science, 2000, 165(1), 135. 26 Hulme J, Komaki M, Nishimura C, et al. Current Applied Physics, 2011, 11, 972. 27 Hou K, Hughes R. Journal of Membrane Science, 2002, 206(1-2), 119. 28 Yang J Y, Nishimura C, Komaki M. Journal of Membrane Science, 2008, 309(1-2), 246. 29 Yan E H, Huang H R, Min R N, et al. International Journal of Hydrogen Energy, 2018, 43, 14466. 30 Song D W, Wang Y J, Liu Y, et al. Journal of rare earths, 2008, 26, 398. 31 Hashi K, Ishikawa K, Matsuda T, et al. Journal of Alloys and Compounds, 2006, 425, 284. 32 Luo W, Ishikawa K, Aoki K. International Journal of Hydrogen Energy, 2012, 37(22), 12793. 33 Huang H R, Yan E H, Min R N, et al. Chinese Journal of Nonferrous Metals, 2018, 28(10), 2058 (in Chinese). 黄浩然, 闫二虎, 闵若男, 等.中国有色金属学报, 2018, 28(10), 2058. 34 Jin Z H, Ge H H, Lin W W, et al. Applied Surface Science, 2014, 322, 47. 35 Losiewicz B, Kubisztal J. International Journal of Hydrogen Energy, 2018, 43, 20004. 36 Yan E H, Min R N, Huang H R, et al. International Journal of Hydrogen Energy, 2019, 44(31), 16684. 37 Yan E H, Li X Z, Tang P, et al. Journal of Metals, 2014, 50(1), 71 (in Chinese). 闫二虎, 李新中, 唐平, 等.金属学报, 2014, 50(1), 71. 38 Yan E H, Li X Z, Rettenmayr M, et al. International Journal of Hydrogen Energy, 2014, 39, 3505. 39 Yan E H, Huang H R, Min R N, et al. Materials Chemistry and Physics, 2018, 212, 282. 40 Ishikawa K, Habaguchi H, Obata N, et al. International Journal of Hydrogen Energy, 2016, 41, 5269. 41 Wan Q L, Zhang L, Wang Z, et al. Cemented Carbide, 2014, 31(4), 202 (in Chinese). 万庆磊, 张立, 王喆, 等.硬质合金, 2014, 31(4), 202.