Effects of Alloy Elements on Microstructure and Shearing Properties of Cu/Sn-/Cu Reflow Soldering Joints
YANG Ping1,2, MAO Yuqing1,2,*, LI Qianpeng2, HE Lianggang2, KE Liming2
1 Key Laboratory of Nondestructive Testing of Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China 2 National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
Abstract: Three different solders, Sn64Bi 35Ag1, Sn64.7Bi 35Ag0.3 and Sn99Ag 0.3Cu0.7, were selected for the reflow welding test. The effects of high Bi, low Ag and low Ag solders on microstructure and tensile shear properties of Sn-based solder joints were investigated. The results show that a scallop-like Cu6Sn5 intermetallic compound is formed at the interface of each solder joint. In the solder joint containing Bi, the accumulation of Bi at the interface and inside of the solder joint leads to the increase of the thickness of the intermetallic compound layer at the interface, and a large number of Bi-rich phases are brittle. The decrease of Ag content in the solder weakens the enrichment of Bi in the solder joint. The thickness of intermetallic compound layer at the interface of Sn99Ag0.3Cu0.7 solder joint is the smallest, and fine Ag3Sn phase particles are formed in the solder joint. The eutectic structure is uniformly distributed, which makes the shear performance of the solder joint optimal, and the shear strength reaches 20.4 MPa.
杨平, 毛育青, 李芊芃, 何良刚, 柯黎明. 合金元素对Cu/Sn-/Cu回流焊焊点界面微观结构及剪切性能的影响[J]. 材料导报, 2021, 35(14): 14156-14160.
YANG Ping, MAO Yuqing, LI Qianpeng, HE Lianggang, KE Liming. Effects of Alloy Elements on Microstructure and Shearing Properties of Cu/Sn-/Cu Reflow Soldering Joints. Materials Reports, 2021, 35(14): 14156-14160.
1 Liang K, Yao G S, Jian H, et al. Electric Welding Machine, 2006(5), 18(in Chinese). 梁凯, 姚高尚, 简虎, 等. 电焊机, 2006(5), 18. 2 Abetw M, Selvadury G. Materials Science and Engineering R, 2000, 27, 95. 3 Zeng K, Tu K N. Materials Science and Engineering R, 2002, 38, 55. 4 Chen J M, Zhang J B, Li M M. Nonferrous Metal Materials and Enginee-ring, 2017, 38(2), 112(in Chinese). 陈剑明, 张建波, 李明茂. 有色金属材料与工程, 2017, 38(2), 112. 5 Jiang Y, Sun L D, Li Z J, et al. Applied Mechanics and Materials, 2014, 3082(543), 3806. 6 Nonferrous Metals and Their Heat Treatment Team. Nonferrous metals and their heat treatment, National Defense Industry Press, China, 1981(in Chinese). 有色金属及其热处理编写组. 有色金属及其热处理, 国防工业出版社, 1981. 7 Zhang X P, Yu C B, Shrestha S, et al. Journal of Materials Science: Materials in Electronics, 2007, 18(6), 665. 8 Zhang X P, Yu C B, Zhang Y P, et al. Journal of Materials Processing Technology, 2007, 192-193, 539. 9 Zhang X P, Yin L M, Yu C B. Journal of Materials Science: Materials in Electronics, 2008, 19(4), 393. 10 Zhao J, Cheng C, Qi L, et al. Journal of Alloys and Compounds, 2009, 473(1-2), 382. 11 Li X, Sun F L, Liu Y, et al. Chinese Journal of Stereology and Image Analysis, 2012, 17(4), 341(in Chinese). 李霞, 孙凤莲, 刘洋, 等. 中国体视学与图像分析, 2012, 17(4), 341. 12 Dybkoy V I. Materials Science, 2009, 44, 5960. 13 Cabarat R, Guillet L, Leroux R. Journal of Institute of Metals, 1994, 75, 391. 14 Meng T, Yang L. Hot Working Technology, 2015, 44(7), 209 (in Chinese). 孟涛, 杨莉. 热加工工艺, 2015, 44(7), 209. 15 Zhang Q K, Zhou H F, Zhang Z F. Chinese Science: Technology Science, 2012, 42(1), 13(in Chinese). 张青科, 邹鹤飞, 张哲峰. 中国科学: 技术科学, 2012, 42(1), 13. 16 Liu A A, Kim H K, Tu K N, et al. Journal of Applied Physics, 1996, 80, 2774. 17 Kim H K, Tu K N. Applied Physics Letters, 1995, 67, 2002. 18 Cao L H, Chen Y B, Shi Q Y, et al. Acta Metallurgica Sinica, 2019, 55(12), 1606(in Chinese). 曹丽华, 陈胤伯, 史起源, 等. 金属学报, 2019, 55(12), 1606.