Please wait a minute...
材料导报  2022, Vol. 36 Issue (24): 21040029-6    https://doi.org/10.11896/cldb.21040029
  金属与金属基复合材料 |
镍基石墨烯复合材料的研究进展
谭海丰1,2,*, 侯梦晴1, 吴晨1, 贺春林1, 张滨2
1 沈阳大学辽宁省先进材料制备技术重点实验室,沈阳 110044
2 东北大学材料各向异性与织构教育部重点实验室,沈阳 110819
Research Progress of Nickel/Graphene Composites
TAN Haifeng1,2,*, HOU Mengqing1, WU Chen1, HE Chunlin1, ZHANG Bin2
1 Liaoning Provincial Key Laboratory of Advanced Materials, Shenyang University, Shenyang 110044, China
2 Key Laboratory for Anisotropy and Texture of Materials Ministry of Education, Northeastern University, Shenyang 110819, China
下载:  全 文 ( PDF ) ( 4207KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镍基复合材料在传统颗粒增强体的作用下可以获得力学性能的显著提升,但往往伴随导热、导电等功能性的下降。石墨烯独特的二维结构使其展现出极高的强度与刚度、良好的化学稳定性、优异的导电与导热等性能,自问世以来便成为理想的颗粒增强体,已在金属基复合材料、陶瓷基复合材料、聚合物基复合材料领域大放异彩。因此,石墨烯的添加可以有效提升镍基复合材料的综合性能。
石墨烯存在密度低、易团聚、与镍基体的浸润性较差等不足,因此石墨烯制备工艺与稳定性、石墨烯在镍基体中的分散性以及与镍基体的界面结合强度仍然限制着镍基石墨烯复合材料的高性能,如何改进已有制备工艺并不断研发新型工艺仍是科研工作者的研究重点。目前,已有的石墨烯增强镍基复合材料的制备工艺主要有电沉积法、粉末冶金法、分子级混合法、化学气相沉积法等。制备工艺的改进升级提高了石墨烯的分散性以及其与镍基体之间的浸润性,进而综合提升了复合材料的结构性与功能性,这有利于其在电子器件、航天航空、机械化工等领域有较为广泛的应用。
本文系统地综述了镍基石墨烯复合材料制备工艺的研究进展,对各种制备工艺的特点进行分析比较,重点介绍了石墨烯对复合材料的硬度、弹性模量、拉伸性能、耐摩擦磨损性、耐腐蚀性、导热及导电性的影响及其机制。同时,结合镍基石墨烯复合材料的潜在应用和发展趋势,提出未来研究中学者们面临的挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭海丰
侯梦晴
吴晨
贺春林
张滨
关键词:  石墨烯  镍基复合材料  力学性能  耐腐蚀性能  导热与导电性    
Abstract: The mechanical properties of nickel matrix composites can be significantly improved by the traditional particle reinforcements, but it is often accompanied by the decrease of thermal conductivity and electrical conductivity. The unique two-dimensional structure of graphene makes it exhibit extremely high strength and stiffness, good chemical stability, excellent electrical and thermal conductivity. Due to its inception, graphene has become an ideal particle reinforcement, and has been widely used in the fields of metal matrix composites, ceramic matrix composites and polymer matrix composites. Therefore, the addition of graphene can effectively improve the comprehensive properties of Ni-based composites.
Graphene has some disadvantages, such as low density, easy agglomeration and poor wettability with nickel matrix. Therefore, the preparation process and stability of graphene, its dispersion in nickel matrix and the interfacial bonding strength still restrict the high performance of nickel matrix composites. How to improve the existing preparation process and continuously develop new processes is still the research focus. At present, the main preparation methods of graphene reinforced Ni-based composites are electrodeposition, powder metallurgy, molecular-level mixing, chemical vapor deposition and so on. With the improvement of the preparation process, the dispersion of graphene and the wettability are improved, thereby comprehensively improving the structural and functional properties of the composites, which is conducive to its wide application in electronic devices, aerospace, mechanical and chemical fields.
In this paper, the research progress of the preparation technology of nicke/graphene composites was systematically reviewed, and the characteristics of various preparation technologies were analyzed and compared. The effects and internal mechanisms of graphene on the hardness, elastic modulus, tensile properties, friction and wear resistance, corrosion resistance, thermal conductivity and electrical conductivity of the composites were mainly introduced. At the same time, combined with the potential application and development trend of nickel/graphene composites, the challenges faced by researchers in future research are proposed.
Key words:  graphene    Ni-based composite    mechanical property    corrosion resistance    thermal and electrical conductivity
出版日期:  2022-12-28      发布日期:  2023-01-03
ZTFLH:  TB331  
基金资助: 国家自然科学基金(51671050);中国博士后科学基金(2020M680977);辽宁省重点研发计划项目(2020JH2/10100011);辽宁省博士启动基金(2019-BS-169)
通讯作者:  hftan8765@syu.edu.cn   
作者简介:  谭海丰,沈阳大学机械工程学院讲师。2010年6月毕业于长春工业大学,获得学士学位,2012年7月毕业于东北大学,获得硕士学位,2018年7月毕业于东北大学,获得博士学位。主要从事复合材料的制备及力学行为研究,以第一作者在Materials Science and Engineering: A、Materials & Design、Advanced Engineering Materials、Materials Research Bulletin等SCI学术期刊发表研究论文多篇。
引用本文:    
谭海丰, 侯梦晴, 吴晨, 贺春林, 张滨. 镍基石墨烯复合材料的研究进展[J]. 材料导报, 2022, 36(24): 21040029-6.
TAN Haifeng, HOU Mengqing, WU Chen, HE Chunlin, ZHANG Bin. Research Progress of Nickel/Graphene Composites. Materials Reports, 2022, 36(24): 21040029-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040029  或          http://www.mater-rep.com/CN/Y2022/V36/I24/21040029
1 Jyotheender K S, Srivastava C. Composites Part B: Engineering, 2019, 175, 107145.
2 Zhang Q, Ren Y H, Li J, et al. Corrosion Science and Protection Technology, 2017, 29(1), 21 (in Chinese).
张倩, 任彦虹, 李娟, 等. 腐蚀科学与防护技术, 2017, 29(1), 21.
3 Liu Y, Zheng F, Wu Y, et al. Journal of Alloys and Compounds, 2020, 826, 154080.
4 Ma S B, Xia Z W, Xu Y, et al. Journal of Materials Engineering, 2017, 45(6), 24 (in Chinese).
马世榜, 夏振伟, 徐杨, 等. 材料工程, 2017, 45(6), 24.
5 Liu Y, Liu Y, Zhang Q, et al. Materials Science and Engineering A, 2018, 727, 133.
6 Zhao Q, Liu Y, Abel E W. Applied Surface Science, 2005, 240(1), 441.
7 Xu J, Tao J, Jiang S, et al. Applied Surface Science, 2007, 254(13), 4036.
8 Zhou S, Zeng X, Hu Q, et al. Applied Surface Science, 2008, 255(5, Part 1), 1646.
9 Wu H, Chen T, Wang Q H. Journal of Materials Engineering, 2011(12), 48 (in Chinese).
吴化, 陈涛, 王庆辉. 材料工程, 2011(12), 48.
10 Zhang Q H, Shen X X, Cheng D H, et al. Plating & Finishing, 2016, 38(12), 1(in Chinese).
张庆辉, 沈喜训, 成旦红, 等. 电镀与精饰, 2016, 38(12), 1.
11 Zhang X, Zeng Y, Liang J, et al. Ceramics International, 2020, 46(9), 13144.
12 Liang Z P, Wang Y Y, Jin H, et al. Journal of Materials Engineering, 2018, 46(5), 112 (in Chinese).
梁智鹏, 王一雍, 金辉, 等. 材料工程, 2018, 46(5), 112.
13 Reinert L, Zeiger M, Suarez S, et al. RSC Advances, 2015, 5, 95149.
14 Mai Y J, Chen F X, Lian W Q, et al. Journal of Alloys and Compounds, 2018, 756, 1.
15 Vlassiouk I, Smirnov S, Ivanov I, et al. Nanotechnology, 2011, 22, 275716.
16 Kumar D R, Singh R, Dubey P, et al. Journal of Nanoparticle Research, 2013, 15, 1847.
17 Akinwande D, Brennan C J, Bunch J S, et al. Extreme Mechanics Letters, 2017, 13, 42.
18 Zhao C. Applied Physics A, 2014, 118(2), 409.
19 Lin S, Shi Y T, Wang Y Y, et al. Materials Reports B:Research Papers, 2019, 33(6), 1945 (in Chinese).
林珊, 史永堂, 王盈盈, 等. 材料导报:研究篇, 2019, 33(6), 1945.
20 Su P, Guo H L, Peng S, et al. Acta Physico-Chimica Sinica, 2012, 28(11), 2745 (in Chinese).
苏鹏, 郭慧林, 彭三, 等. 物理化学学报, 2012, 28(11), 2745.
21 Pei F Y, Xu S G, Liu Y L, et al. CIESC Jorunal, 2013, 64(8), 3062 (in Chinese).
裴福云, 徐慎刚, 刘应良, 等. 化工学报, 2013, 64(8), 3062.
22 Lee D, Song S H, Hwang J, et al. Small, 2013, 9(15), 2602.
23 Song S H, Park K H, Kim B H, et al. Advanced Materials, 2013, 25(5), 732.
24 Fan W, Zhang C, Tjiu W W, et al. Journal of Materials Research, 2013, 28(4), 611.
25 Chu K, Jia C. Physica Status Solidi (a), 2014, 211(1), 184.
26 Hong Q H, Yan S J, Yang C, et al. Journal of Materials Engineering, 2016, 44(9), 1 (in Chinese).
洪起虎, 燕绍九, 杨程, 等. 材料工程, 2016, 44(9), 1.
27 Kuang D, Xu L, Liu L, et al. Applied Surface Science, 2013, 273, 484.
28 Ding X L, Hu Z F, Jin G, et al. Journal of Materials Engineering, 2018, 46(11), 110 (in Chinese).
丁小龙, 胡振峰, 金国, 等. 材料工程, 2018, 46(11), 110.
29 Rashad M, Pan F, Tang A, et al. Progress in Natural Science: Mate-rials International, 2014, 24(2), 101.
30 Li J L, Wang X D, Wu Y, et al. Chinese Journal of Rare Metals, 2018, 42(3), 252 (in Chinese).
李炯利, 王旭东, 武岳, 等. 稀有金属, 2018, 42(3), 252.
31 Rashad M, Pan F, Hu H, et al. Materials Science and Engineering: A, 2015, 630, 36.
32 Yuan Q H, Zeng X S, Wu J B, et al. Special Casting & Nonferrous Alloys, 2016, 36(3), 282 (in Chinese).
袁秋红, 曾效舒, 吴俊斌, 等. 特种铸造及有色合金, 2016, 36(3), 282.
33 Borkar T, Mohseni H, Hwang J, et al. Journal of Alloys and Compounds, 2015, 646, 135.
34 Siokou A, Ravani F, Karakalos S, et al. Applied Surface Science, 2011, 257(23), 9785.
35 Li J, An Z, Wang Z, et al. ACS Applied Materials & Interfaces, 2016, 8(6), 3969.
36 Zhang H, Zhang N, Fang F. Ultrasonics Sonochemistry, 2020, 62, 104858.
37 Jiang J, He X, Du J, et al. Materials Letters, 2018, 220, 178.
38 Lei Y, Jiang J, Bi T, et al. RSC Advances, 2018, 8(39), 22113.
39 Fortunato G V, Lima F D, Maia G. Journal of Power Sources, 2016, 302, 247.
40 Saha R K, Khan T I. Surface and Coatings Technology, 2010, 205(3), 890.
41 Yasin G, Khan M A, Arif M, et al. Journal of Alloys and Compounds, 2018, 755, 79.
42 Kuang D. Preparation and properties of graphene/nickel based compo-site. Master's Thesis, Shanghai Jiaotong University, China, 2013 (in Chinese).
匡达. 石墨烯/镍基复合材料的制备和性能研究. 硕士学位论文, 上海交通大学, 2013.
43 Ji C B, Wang X F, Zou J W, et al. Journal of Materials Engineering, 2017, 45(3), 1 (in Chinese).
吉传波, 王晓峰, 邹金文, 等. 材料工程, 2017, 45(3), 1.
44 Hwang J, Yoon T, Jin S H, et al. Advanced Materials, 2013, 25(46), 6724.
45 Cao M, Xiong D B, Tan Z Q, et al. Carbon, 2017, 117, 65.
46 Chen F, Ying J, Wang Y, et al. Carbon, 2016, 96, 836.
47 Ren Z, Meng N, Shehzad K, et al. Nanotechnology, 2015, 26(6), 065706.
48 Kumar C M P, Venkatesha T V, Shabadi R. Materials Research Bulletin, 2013, 48(4), 1477.
49 Xiang L, Shen Q, Zhang Y, et al. Surface and Coatings Technology, 2019, 373, 38.
50 Lei Y, Jiang J, Bi T, et al. Tribology Letters, 2018, 66(4), 129.
51 Lei Y, Du J, Pang X, et al. Materials Research Express, 2018, 5(5), 056512.
52 Jiang K, Li J, Liu J. RSC Advances, 2014, 4(68), 36245.
53 Hu Z F, Ding X L, Jin G, et al. Plating & Finishing, 2017, 36(21), 1117 (in Chinese).
胡振峰, 丁小龙, 金国, 等. 电镀与涂饰, 2017, 36(21), 1117.
54 Ding X L. Study on preparation and performance of electro-brush plating Ni-graphene composite coatings. Master's Thesis, Haerbin Engineering University, China, 2018 (in Chinese).
丁小龙. 电刷镀Ni-石墨烯复合镀层的制备与性能研究. 硕士学位论文, 哈尔滨工程大学, 2018.
[1] 梁泽芬, 林小军, 纳仁花, 牛玉艳, 王亮. 单层石墨烯电子结构的调控策略和对接的研究进展[J]. 材料导报, 2022, 36(Z1): 22020133-6.
[2] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[3] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[4] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[5] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[6] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[7] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[8] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[9] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[10] 刘伟, 贾琨, 谷建宇, 马晨, 魏学红. Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究[J]. 材料导报, 2022, 36(9): 21020136-5.
[11] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[12] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[13] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[14] 李格, 韩彬, 李美艳, 刘鹏, 李朝晖. 石墨烯增强金属基复合涂层的研究进展[J]. 材料导报, 2022, 36(8): 20080127-7.
[15] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed