Please wait a minute...
材料导报  2022, Vol. 36 Issue (24): 21040201-8    https://doi.org/10.11896/cldb.21040201
  无机非金属及其复合材料 |
调湿材料吸放湿性能评价方法综述
崔雨萌, 张宇峰*
华南理工大学建筑学院,亚热带建筑科学国家重点实验室,广州 510640
Adsorption and Desorption Performance Evaluation Methods for Hygroscopic Materials:a Review
CUI Yumeng, ZHANG Yufeng
State Key Laboratory of Subtropical Building Science, School of Architecture, South China University of Technology, Guangzhou 510640, China
下载:  全 文 ( PDF ) ( 7217KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 不良湿环境对居住者的健康与舒适、结构耐久性及建筑能耗产生不利影响。许多建筑因偏重温度而弱化或忽视湿度的设计与调节,使得湿相关的问题频发。充分利用调湿材料是一种零能耗、绿色的调节室内湿环境的方式,在建筑领域有着广阔的应用前景。
吸放湿性能评价是调湿材料研发和应用的基础,目前可从材料、系统和房间三个层级展开。材料层级考察材料的湿物性参数,基础性强,可直观精准地表达材料自身的特点,测试方法均已成熟和标准化,但测试周期长,现有的材料数据库不完备,评价指标的功能受限。系统层级在实验室营造的动态条件下展开,测试简便快速,兼顾实际房间边界情况,与其他两个层级相比独具优势,但存在指标误用、对实际敏感性因素考虑不足的问题。房间层级真实反映实际场景下材料与房间的表现,评价结果最可靠,但现有评价指标受限,测试方法不统一。近年来的研究更为深入,材料性能在标准和实际环境中的差异在材料层级受到关注,湿缓冲值的实际敏感性因素在系统层级得到研究,房间层级则通过新的计算或性能指标以寻求更科学的评价方法。未来研究还可关注三层级间的内在联系,建立交互通道,形成“材料-构造-空间”的综合评价体系。
本文以调湿材料的吸放湿性能评价方法为主要对象,分别从材料、系统、房间三个层级系统整理和探讨现有各评价指标与方法的特点与区别、用途与局限,为其正确理解、合理使用和进一步的研究发展提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔雨萌
张宇峰
关键词:  调湿材料  评价指标  测试方法  湿缓冲    
Abstract: Poor humid environment has adverse effects on occupants' health and comfort, structure durability and building energy consumption. Humidity-related problems occur frequently in many buildings due to the focus on the design and control of temperature and the weakening or neglect of humidity. Making full use of hygroscopic materials is a zero-energy-consumption and green way of indoor humid environment conditioning, which has broad application prospects in the construction field.
Adsorption and desorption performance evaluation is the basis of development and application of hygroscopic materials, which currently can be carried out from three levels of material, system, and room. At the material level, the hygric properties of materials are examined. It is highly fundamental and can intuitively and accurately express the characteristics of materials with the mature and standardized test methods. It is yet limited on the long test cycle, the incomplete material database, and the limited function of evaluation indicators. At the system level, the material performance is evaluated under the dynamic conditions created by the laboratory. It has unique advantages compared with the other two levels as the test is simple and fast and the actual room boundary is partly taken into account. Some problems still need to be faced, such as misuse of indicators and insufficient consideration of actual sensitivity factors. At the room level, the performances of materials and rooms are truly evaluated in the actual scene. The evaluation at this level is the most reliable, but the existing evaluation indicators are quite limited and the test methods are not unified. In recent years, the research has been more in-depth. More attention was paid at the material level to the materials' properties diffe-rences in the standard and actual environments, the actual sensitivity factors of moisture buffer value were investigated at the system level, and more scientific evaluation methods were proposed at the room level based on the new calculation or performance indicators. Future research can also focus on the internal relationship among the three levels, and constructing a comprehensive evaluation system of ‘material-structure-space' by establishing the interaction channels.
Taking the moisture absorption and desorption performance evaluation method for hygroscopic materials as the main object, this paper syste-matically reviews and discusses the existing evaluation indicators and methods in aspects of characteristics and differences, uses and limitations, from three levels of materials, system, and room, to provide reference for the correct understanding, rational use and further research and deve-lopment of the evaluation method.
Key words:  hygroscopic material    evaluation indicator    test method    moisture buffering
出版日期:  2022-12-28      发布日期:  2023-01-03
ZTFLH:  TU55+1  
基金资助: 国家公派出国留学项目(201906150064)
通讯作者:  zhangyuf@scut.edu.cn   
作者简介:  崔雨萌,于2014年在东北林业大学建筑环境与设备工程专业获得工学学士学位,于2017年在沈阳建筑大学建筑与土木工程获得工学硕士学位。现为华南理工大学建筑学院建筑技术科学专业博士研究生,在张宇峰教授的指导下进行研究。目前主要研究领域为热湿耦合传递。
张宇峰,华南理工大学建筑学院教授,博士研究生导师,副院长,亚热带建筑科学国家重点实验室建筑热环境与节能子实验室主任。分别于2000年和2006年在清华大学建筑环境与设备工程专业取得工学学士学位和博士学位。自2006年起,在华南理工大学任教。期间分别于2009年、2012年、2014年认定为“教育部新世纪优秀人才”、“华南理工大学杰出人才培养计划培养对象”、“广东省‘千百十人才培养工程'省级培养对象”。长期从事人体热舒适和热适应、建筑与城市热环境、绿色建筑与生态城市等相关领域的研究,并取得了大量系统性、创新性的研究成果,近年来在SCI学术期刊发表论文20余篇。
引用本文:    
崔雨萌, 张宇峰. 调湿材料吸放湿性能评价方法综述[J]. 材料导报, 2022, 36(24): 21040201-8.
CUI Yumeng, ZHANG Yufeng. Adsorption and Desorption Performance Evaluation Methods for Hygroscopic Materials:a Review. Materials Reports, 2022, 36(24): 21040201-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040201  或          http://www.mater-rep.com/CN/Y2022/V36/I24/21040201
1 Cui Y M. Research on the effect of coupled heat and moisture transfer on energy consumption and indoor thermal and moisture environment of public buildings. Master's Thesis, Shenyang Jianzhu University, China, 2017 (in Chinese).
崔雨萌. 热湿耦合迁移对公共建筑能耗及热湿环境作用影响研究. 硕士学位论文, 沈阳建筑大学, 2017.
2 Wu Z M, Qin M H, Zhang M J, et al. China Sciencepaper, 2018, 13(1), 1 (in Chinese).
吴智敏, 秦孟昊, 张明杰, 等. 中国科技论文, 2018, 13(1), 1.
3 Yu S, Cui Y M, Shao Y F, et al. Energies, 2019, 12(1), 141.
4 Yu S, Cui Y M, Shao Y F, et al. Energies, 2019, 12(1), 191.
5 Thomsen K E, Rose J, Mørck O,et al. Energy and Buildings, 2016, 123(2), 8.
6 Yu S, Cui Y M, Feng G H. In: 8th International Cold Climate HVAC 2015 Conference. Dalian, 2015, pp. 318.
7 Wang Y Y, Liu Y F, Wang D J, et al. Indoor and Built Environment, 2016, 26(5), 642.
8 Fořt J, Doleželová M, ČernÝ R. In: “Environmental Engineering” 10th International Conference. Lithuania, 2017, pp. 1.
9 Wang Q. Study on dehumidification characteristics and application fundamentals of room air conditioners. Ph.D. Thesis, South China University of Technology, China, 2015 (in Chinese).
王倩. 房间空调器除湿特性与应用基础研究. 博士学位论文,华南理工大学, 2015.
10 Padifield T. The role of absorbent building materials in moderating changes of relative humidity. Ph.D. Thesis, Technical University of Denmark, Denmark, 1998.
11 Ran M Y. Materials Review, 2002, 16(11), 42 (in Chinese).
冉茂宇. 材料导报, 2002, 16(11), 42.
12 Ran M Y. Journal of Huaqiao University, 2003, 24(1), 64 (in Chinese).
冉茂宇. 华侨大学学报, 2003, 24(1), 64.
13 Jiang Z W. Materials Reports, 2006, 20(10), 8 (in Chinese).
蒋正武. 材料导报, 2006, 20(10), 8.
14 Deng N, Wu S L, Chen H X. Materials Reports, 2013, 27(Z2), 368 (in Chinese).
邓妮, 武双磊, 陈胡星. 材料导报, 2013, 27(Z2), 368.
15 Han X, Chen Q H. In: Shanghai Society of Refrigeration 2015 Conference. Shanghai, 2013, pp. 345 (in Chinese).
韩星, 陈秋火. 上海市制冷学会2013年学术年会. 上海, 2013, pp. 345.
16 Rode C. Moisture buffering of building materials, Technical University of Denmark Press, Denmark, 2005.
17 Abadie M O, Mendonça K C. Building and Environment, 2009, 44(2), 388.
18 Wu H. Basic theoretical study and experiment on humidity controlling materials subjected to building envelope. Master's Thesis, Tongji University, China, 2006 (in Chinese).
彭昊. 建筑围护结构调湿材料理论和实验的基础研究. 硕士学位论文, 同济大学, 2006.
19 Ma B Q. Building Science, 2007, 23(8), 72 (in Chinese).
马斌齐, 建筑科学, 2007, 23(8), 72.
20 Zhang X M. Research on humidity-controlling wall materials and its moisture absorption and desorption capability. Master's Thesis, Tianjin University, China, 2005 (in Chinese).
张秀梅, 调湿墙体材料及其调湿性能的研究. 硕士学位论文, 天津大学, 2005.
21 Huang P Z. Properties of passive green humidity-controlling materials. Master's Thesis, Xi'an University of Architecture and Technology, China, 2007 (in Chinese).
黄沛增. 被动式绿色调湿材料性能的试验研究. 硕士学位论文, 西安建筑科技大学, 2007.
22 Shi L Y, Liu J, Zhang H B. Building Science, 2017, 33(2), 42 (in Chinese).
史路阳, 刘京, 张会波. 建筑科学, 2017, 33(2), 42.
23 Hygrothermal performance of building materials and products - Determination of hygroscopic sorption properties, ES-AENOR Press, Spanish, 2013, pp. 22.
24 Standard test method for hygroscopic sorption isotherms of building materials, ASTM International Press, USA, 2016, pp. 4.
25 Hygrothermal performance of building materials and products - Determination of water vapour transmission properties -Cup method, ES-AENOR Press, Spanish, 2016, pp. 34.
26 Standard test methods for water vapor transmission of materials, ASTM International Press, USA, 2016, pp. 8.
27 Kumaran M K, Lackey J C, Normandin N, et al. A thermal and moisture property database for common building and insulation materials, National Research Council Press, Canada, 2002.
28 Roels S, Carmeliet J, Hens H. Moisture transfer properties and materials characterisation, KU Leuven Press, Belgium, 2003.
29 Kumaran M K. Heat, air and moisture transfer in insulated envelope parts: material properties, KU Lenven Press, Belgium, 1996.
30 Heat,air and moisture control in building assemblies-material properties, ASHRAE press, USA, 2021, pp. 1.
31 Roels S, Carmeliet J, Hens H, et al. Journal of Thermal Envelope and Building Science, 2016, 27(4), 307.
32 Colinart T, Glouannec P. Energy and Buildings, 2017, 139(2017), 360.
33 Colinart T, Glouannec P, Bendouma M, et al. Energy and Buildings, 2017, 152(2017), 42.
34 Dubois S, Mcgregor F, Evrard A, et al. Building and Environment, 2014, 81(11), 192.
35 Mcgregor F, Heath A, Fodde E, et al. Building and Environment, 2014, 75(5), 11.
36 Talukdar P, Osanyintola O F, Olutimayin S O, et al. International Journal of Heat and Mass Transfer, 2007, 50(25-26), 4915.
37 James C, Simonson C J, Talukdar P, et al. International Journal of Heat and Mass Transfer, 2010, 53(19-20), 3638.
38 Labat M, Woloszyn M, Garnier G, et al. Building and Environment, 2015, 87(2015), 129.
39 Colinart T, Lelievre D, Glouannec P. Energy and Buildings, 2016, 112(2016), 1.
40 Busser T, Piot A, Pailha M, et al. In: Central European Symposium on Building Physics. Dresden, 2016, pp. 1.
41 Ma B Q. Research on humidity controlling material adjustment room humidity environment mechanism and appraisal target. Master's Thesis, Xi'an University of Architecture and Technology, China, 2007 (in Chinese).
马斌齐. 调湿建筑材料调节室内湿环境的机理和评价指标研究. 硕士学位论文, 西安建筑科技大学, 2007.
42 Materials J. Test method of adsorption/desorption efficiency for building materials to regulate an indoor humidity-Part2: Sealed box method, Japan, 2002, pp. 1.
43 Materials J. Test method of adsorption/desorption efficiency for building materials to regulate an indoor humidity-Part1: Response method of humidity, Japan, 2002, pp. 1.
44 Rode C, Status on NORDTEST project: Moisture buffering of building materials, Technical University of Denmark Press, Denmark, 2004.
45 Institution B S. Hygrothermal performance of building materials and pro-ducts-determination of moisture adsorption/desorption properties in response to humidity variation, ASTM International Press, USA, 2008, pp. 1.
46 Roels S, Janssen H. Journal of Building Physics, 2006, 30(2), 137.
47 Shi C, Zhang H, Xuan Y. Building and Environment, 2019, 160(2019), 1.
48 Janssen H, Roels S. Energy and Buildings, 2009, 41(4), 382.
49 Gómez I, Guths S, Souza R, et al. Energy and Buildings, 2011, 43(4), 873.
50 Busser T, Berger J, Piot A, et al. Building and Environment, 2018, 131(2018), 197.
51 Osanyintola O F, Talukdar P, Simonson C J. Energy and Buildings, 2006, 38(10), 1283.
52 Talev G, Jelle B P, Gustavsen A, et al. In: Proceedings of the 4th International Building Physics Conference. Istanbul, 2009, pp. 57.
53 Mortensen L H, Rode C, Peuhkuri R. In: Proceedings of the 3rd IBPC Conference. Montreal, 2006, pp. 1.
54 Zhang H, Shi C, Pan D, et al. Journal of Building Engineering, 2020, 32(2), 101539.
55 Zhang M, Qin M, Rode C, et al. Applied Thermal Engineering, 2017, 124(2017), 337.
56 Cascione V, Maskell D, Shea A, et al. Construction and Building Materials, 2019, 200(2019), 333.
57 Padfield T, Jensen L A. In: 9th Nordic Symposium on Building. Finland, 2011, pp. 1.
58 Janssen H, Roels S. Energy and Buildings, 2009, 41(4), 382.
59 Vereecken E, Roels S, Janssen H. Journal of Building Physics, 2010, 34(3), 223.
60 Zhang H, Yoshino H, Hasegawa K. Building and Environment, 2012, 48(2012), 27.
61 Zhang H, Yoshino H, Hasegawa K, et al. Energy and Buildings, 2017, 139(2017), 214.
62 Shi C N, Zhang H B, Ji Y B. Building Science, 2019, 35 (10), 6 (in Chinese).
石诚楠, 张会波, 吉野博. 建筑科学, 2019, 35 (10), 6.
63 Li Y, Fazio P, Rao J. Building and Environment, 2012, 47(2012), 205.
64 Yang X, Fazio P, Ge H, et al. Building and Environment, 2012, 47(2012), 188.
[1] 孙国文, 张营, 闫娜, 王亚倩, 李占华. 水下不分散混凝土的抗分散性能设计及其表征研究进展[J]. 材料导报, 2022, 36(1): 20040167-11.
[2] 陈飞, 张林艳, 封基良, 马永, 赵雁斌. 沥青混合料低温抗裂性能试验方法研究进展[J]. 材料导报, 2021, 35(z2): 127-137.
[3] 谢贵堂, 张均, 姚明, 王宇川, 蒋国昌, 姜志国. 调湿材料的研究与应用现状[J]. 材料导报, 2021, 35(Z1): 634-638.
[4] 李杰锋, 杨忠清. 形状记忆合金热力学经验本构模型的数值分析及修正[J]. 材料导报, 2021, 35(18): 18116-18123.
[5] 王友德, 史涛, 夏敏, 徐善华. 基于形貌的结构钢锈蚀评价指标及提取方法[J]. 材料导报, 2021, 35(16): 16138-16143.
[6] 胡明玉, 周侠, 李晔, 谭煜秋. TiO2/硅藻土/泥炭藓复合光催化调湿材料研究[J]. 材料导报, 2021, 35(10): 10036-10041.
[7] 石加顺, 钱如胜, 张云升, 陈逸东, 钱佳佳, 刘志勇. 水泥基材料气体渗透性测试方法及与耐久性关系的研究进展[J]. 材料导报, 2021, 35(1): 1121-1130.
[8] 胡明玉, 王红英, 刘子航, 胡裕倩. 抑霉菌泥炭藓/硅藻土复合调湿材料的研究[J]. 材料导报, 2020, 34(14): 14051-14056.
[9] 周鹏, 赵华, 陶海征, 祖成奎, 刘永华, 石凯文, 张瑞. 硫系玻璃熔体的黏度测试方法和黏温方程[J]. 材料导报, 2019, 33(Z2): 181-188.
[10] 游敏, 李明波, 袁有录, 林高, 余海洲. 胶粘剂冲击性能测试方法研究现状[J]. 材料导报, 2019, 33(Z2): 210-214.
[11] 赵猛,张亮,熊明月. Sn-Cu系无铅钎料的研究进展及发展趋势[J]. 材料导报, 2019, 33(15): 2467-2478.
[12] 胡明玉, 付超, 魏丽丽, 刘章君. 等钒铁渣复合物改性硅藻土制备高强耐水调湿材料[J]. 《材料导报》期刊社, 2018, 32(8): 1230-1235.
[13] 朱建勇, 何兆益. 沥青胶结料自愈合研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 847-854.
[14] 高礼雄,丁汝茜,姚燕,荣辉,王海良,张磊. 混凝土的微生物腐蚀:机理、影响因素、评价指标及防护技术[J]. 《材料导报》期刊社, 2018, 32(3): 503-509.
[15] 王朝辉, 韩晓霞, 陈姣, 侯荣国, 郑少鹏. 浇注式导电沥青混凝土传导热效果[J]. 材料导报, 2018, 32(22): 3891-3899.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed