Please wait a minute...
材料导报  2021, Vol. 35 Issue (18): 18116-18123    https://doi.org/10.11896/cldb.20070071
  金属与金属基复合材料 |
形状记忆合金热力学经验本构模型的数值分析及修正
李杰锋1,2, 杨忠清1,2
1 南京航空航天大学无人机研究院,南京 210016
2 中小型无人机先进技术工业与信息化部重点试验室,南京 210016
Numerical Analysis and Modification of Thermomechanical Empirical Constitutive Model of Shape Memory Alloy
LI Jiefeng1,2, YANG Zhongqing1,2
1 Research Institute of Unmanned Aerial Vehicle, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2 Key Laboratory of Advanced Technology for Small and Medium-Sized UAV, Ministry of Industry and Information Technology, Nanjing 210016, China
下载:  全 文 ( PDF ) ( 7777KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 形状记忆合金本构模型的不断发展可以更精确地描述其特殊的热力学特性,具有重要的理论意义,但引入的参数越多,形式越复杂,不便于实际工程应用。经验本构模型是在金属材料线弹性本构模型基础上建立的,具有形式简洁、便于理解的优点,然而,如何利用经验本构模型进行数值分析,模型中的性能参数如何获得是应用中亟需解决的问题。为此,本研究给出了与应用条件一致的形状记忆合金性能参数测试方法及对数据的分析技巧,进而获得描述形状记忆合金特性的性能参数。以此为基础,利用经验本构模型对形状记忆合金在恒定载荷下的应变-温度关系、恒定温度下的应力-应变关系进行了分析,并与试验结果进行对比,对模型中存在的误差进行了修正,研究结果为形状记忆合金驱动器的设计提供了理论和试验依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李杰锋
杨忠清
关键词:  形状记忆合金  本构模型修正  数值分析  性能测试方法    
Abstract: The development of constitutive model of shape memory alloy (SMA) can be used to accurately describe the special thermomechanical properties of SMA, which is important in the construction of theory of constitutive model. Meanwhile, more material parameters and more complex equations in the developed constitutive models make them difficult to be applied in the engineering. Empirical constitutive model is constructed based on the elastic linear constitutive model of metal materials, which is concise in form and understandable for engineers. However, the implementation of the numerical analysis of thermomechanical properties based on the empirical constitutive model and the testing method of material parameters for SMA are still intriguing issues. Therefore, the testing method consistent with the application condition was presented, and the analysis technique for experimental data was proposed in this paper. Then, the material parameters were obtained to describe all the characterizations of SMA. Based on these parameters, the empirical constitutive model was used to predict the relation of strain-temperature under constant stress loading and the relation of stress-strain under constant temperature. The predicted results were compared with the experimental data, and the difference in the empirical constitutive model was modified. The research conclusions are useful in theoretical analysis and SMA properties testing for designing of a SMA driver.
Key words:  shape memory alloy    modification of constitutive model    numerical analysis    testing method of properties
               出版日期:  2021-09-25      发布日期:  2021-09-30
ZTFLH:  TB381  
基金资助: 中央高校基本科研业务费专项资金(NP2020415)
作者简介:  李杰锋,2019年获得工程力学博士学位,南京航空航天大学无人机研究院副研究员,硕士研究生导师,发表学术论文10多篇,申请发明专利9余项,主要从事智能材料/结构及其力学性能研究。
引用本文:    
李杰锋, 杨忠清. 形状记忆合金热力学经验本构模型的数值分析及修正[J]. 材料导报, 2021, 35(18): 18116-18123.
LI Jiefeng, YANG Zhongqing. Numerical Analysis and Modification of Thermomechanical Empirical Constitutive Model of Shape Memory Alloy. Materials Reports, 2021, 35(18): 18116-18123.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070071  或          http://www.mater-rep.com/CN/Y2021/V35/I18/18116
1 Mohd Jani J, Leary M, Subic A, et al.Material and Design, 2014, 56,1078.
2 Sayyad H, Zakerzadeha M R, Salehi H.Scientia Iranica B, 2012, 19 (2),249.
3 Cisse C, Zaki W, Zineb T B. International Journal of Plasticity, 2016, 76, 244.
4 Abeyaratne R, Knowles J K.Journal of the Mechanics and Physics of Solids, 1990, 38(3),345.
5 Sato T, Saitoh K, Shinke N.Materials Science and Engineering A, 2008, 481,250.
6 Levitas V I, Ozsoy I B.International Journal of Plasticity, 2009, 25 (2),239.
7 Hackl K, Heinen R.Continuum Mechanics and Thermodynamics, 2008, 19(8),499.
8 Zhou T, Kan Q H, Kang G Z, et al.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3), 588 (in Chinese).
周廷, 阚前华, 康国政等. 力学学报, 2017, 49(3), 588.
9 Chemiskya Y, Hartlb D J, Meraghnia F.International Journal of Fatigue, 2018, 112, 263.
10 Oliveira S A, Savi M A, Zouain N.Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38, 1451.
11 Cisse C, Zaki W, Zineb T B. International Journal of Plasticity, 2016, 76, 244.
12 Yu B B, Fan Y J, Wang S L, et al.Materials Reports B:Research Papers, 2017, 31(3), 153 (in Chinese).
余滨彬, 樊禹江, 王社良, 等. 材料导报:研究篇, 2017, 31(3), 153.
13 Tanaka K.Research Mechanica, 1986, 18, 251263.
14 Liang C, Rogers C A.Journal of Intelligent Material Systems and Structures, 1990, 1,207.
15 Brinson L C.Journal of Intelligent Material Systems and Structures, 1993, 4,229.
16 Liu Q, Ren J T, Jiang J S, et al.Advances in Mechanics, 2007, 37(2), 189(in Chinese).
刘芹, 任建亭, 姜节胜, 等. 力学进展, 2007, 37(2), 189.
17 Hartl D J, Lagouds D C.Thermomechanical Characterization of Shape Memory Alloy Materials, Springer Science+Business Media LLC, USA, 2008.
18 Prahlad H, Chopra I.Journal of Intelligent Material Systems and Structures, 2001, 12, 383.
19 Peter D A, Easterling K E, Shenrif M Y.Phase transformation in metals and alloys, Higher Education Press,China, 2010 (in Chinese).
Peter D A, Easterling K E, Shenrif M Y.金属与合金中的相变, 高等教育出版社, 2010.
20 Bo Z, Lagoudas D C.International Journal of Engineering Science, 1999, 37, 1205.
21 Chang B, Shaw J, Iadicola M.Continuum Mechanics and Thermodynamics, 2006, 18(1-2), 83.
22 Lagoudas D C.Shape Memory Alloy Modeling and Engineering Applications, Springer Science+Business Media LLC, USA, 2008.
23 Rao A, Srinivasa A R, Reddy J N.Design of Shape Memory Alloy (SMA) Actuators, Springer Science+Business Media LLC, USA, 2015.
24 Dye T E. An experimental investigation of the behavior of nitinol. Master's Thesis, Virginia Polytechnic Institute and State University, USA, 1990.
25 Jiang H F. The exploration of metal materials with negative thermal expansion. Master's Thesis, Xiamen University, China, 2009 (in Chinese).
江惠芳.负膨胀金属材料的探索. 硕士学位论文, 厦门大学,2009.
26 Mavoori H, Jin S. Journal of the Minerals, Metals and Materials Society, 1998, 7, 70.
[1] 叶俊杰, 贺志荣, 张坤刚, 冯辉. 退火温度对Ti-50.8Ni-0.1Zr形状记忆合金丝记忆行为和力学性能的影响[J]. 材料导报, 2021, 35(4): 4118-4123.
[2] 刘兵飞, 董少哲, 周蕊, 杜春志. SMA损伤对航空发动机变形齿单齿力学性能的影响[J]. 材料导报, 2021, 35(16): 16070-16075.
[3] 李锐, 曾令碧, 刘腾, 王晓杰, 杨平安. 不同温度下纯Ni/NiTi合金的摩擦特性研究[J]. 材料导报, 2020, 34(Z1): 297-303.
[4] 李启泉,李岩,马悦辉. 钛基高温形状记忆合金进展综述[J]. 材料导报, 2020, 34(3): 3142-3147.
[5] 刘兵飞, 刘艳艳, 周蕊. 航空发动机变形齿的新材料设计与力学性能[J]. 材料导报, 2020, 34(2): 2117-2122.
[6] 刘博, 王社良, 李彬彬, 杨涛, 李昊, 刘洋, 何露. 一种考虑应变幅值和应变速率影响的超弹性SMA宏观唯象本构模型[J]. 材料导报, 2020, 34(14): 14161-14167.
[7] 刘博, 王社良, 何露, 李昊, 杨涛, 李彬彬. NiTi形状记忆合金丝的约束回复应力输出特性及本构模型[J]. 材料导报, 2020, 34(10): 10082-10087.
[8] 毛虎, 杨宏亮, 史晓斌. 纳米晶NiTi形状记忆合金的研究进展[J]. 材料导报, 2019, 33(13): 2237-2242.
[9] 李云飞, 曾祥国. 基于不可逆热力学的Ni-Ti合金动态本构模型及其有限元实现[J]. 材料导报, 2019, 33(10): 1676-1680.
[10] 邵明增, 崔春娟, 杨洪波. 医用NiTi形状记忆合金表面氧化改性研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1181-1186.
[11] 袁勃, 曾磊, 钱明芳, 张学习, 耿林. 形状记忆合金弹热效应研究进展[J]. 材料导报, 2018, 32(17): 3033-3040.
[12] 余滨杉, 樊禹江, 王社良, 杨涛. 考虑加/卸载速率影响的Ti-Ni形状记忆合金简化本构模型[J]. 《材料导报》期刊社, 2017, 31(6): 153-160.
[13] 贺志荣, 吴佩泽, 刘康凯, 冯辉, 王家乐. Ni含量对激冷贫镍TiNi形状记忆合金薄带相变行为的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 17-20.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed