Please wait a minute...
材料导报  2021, Vol. 35 Issue (4): 4118-4123    https://doi.org/10.11896/cldb.19100010
  金属与金属基复合材料 |
退火温度对Ti-50.8Ni-0.1Zr形状记忆合金丝记忆行为和力学性能的影响
叶俊杰, 贺志荣, 张坤刚, 冯辉
陕西理工大学材料科学与工程学院,汉中 723001
Effect of Annealing Temperature on Memory Behaviors and Mechanical Properties of Ti-50.8Ni-0.1Zr Shape Memory Alloy Wire
YE Junjie, HE Zhirong, ZHANG Kungang, FENG Hui
School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
下载:  全 文 ( PDF ) ( 5145KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 用拉伸试验、差示扫描量热仪、光学显微镜和扫描电子显微镜研究了退火温度对Ti-50.8Ni-0.1Zr合金丝形状记忆效应、超弹性、力学性能和断口形貌的影响。结果表明:350~400 ℃和600~700 ℃退火态Ti-50.8Ni-0.1Zr合金丝呈超弹性(SE),600 ℃退火态合金丝的平台应力最大(483 MPa)、残余应变最小(0.1%),350~400 ℃退火态合金丝SE稳定性最好;450~550 ℃退火态合金丝呈现形状记忆效应(SME),500 ℃退火态合金丝的平台应力最小(190 MPa),450 ℃退火态合金丝的残余应变最大(4.9%)、SME稳定性最好。600~700 ℃退火态合金丝的塑性高于350~550 ℃退火态,但强度低于后者;400 ℃退火态合金丝的抗拉强度最大(1 489 MPa),650 ℃退火态合金丝的伸长率最大(35.1%)。退火态Ti-50.8Ni-0.1Zr合金丝的断口形貌呈韧窝状,属微孔聚集型韧性断裂,韧窝处存在第二相颗粒和孔洞,退火温度对断口形貌的影响不大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶俊杰
贺志荣
张坤刚
冯辉
关键词:  Ti-50.8Ni-0.1Zr合金丝  形状记忆合金  退火温度  形状记忆效应  超弹性    
Abstract: The effect of annealing temperature (Ta) on the shape memory effect, superelasticity, mechanical properties and fracture morphology of Ti-50.8Ni-0.1Zr alloy wire were investigated by tensile test, differential scanning calorimetry, optical microscope and scanning electron microscopy. The results are as follows. The alloy wires annealed at 350—400 ℃ and 600—700 ℃ present superelasticity (SE), the maximum value (483 MPa) of the platform stress and the minimum value (0.1%) of the residual strain are all obtained in the alloy wires annealed at 600 ℃, and the stability of SE in the alloy wires annealed at 350—400 ℃ is the best. The alloy wires annealed at 450—550 ℃ present shape memory effect (SME), the minimum value (190 MPa) of the platform stress is obtained in the alloy wire annealed at 500 ℃, and the maximum value (4.9%) of the residual strain is obtained in the alloy wire annealed at 450 ℃, and the stability of SME in the alloy wire annealed at 450 ℃ is the best. The plasticity of the alloy wires annealed at 600—700 ℃ is superior to the alloy wires annealed at 350—550 ℃, but the strength is less than that of the latter. The maximum value (1 489 MPa) of the tensile strength is obtained in the alloy wire annealed at 400 ℃, and the maximum value (35.1%) of the percentage elongation is obtained in the alloy wire annealed at 650 ℃. The fracture morphology of the alloy wire presents dimple, and su-bordinates to ductile fracture of the microporous aggregation. Ta has little effect on fracture morphology.
Key words:  Ti-50.8Ni-0.1Zr alloy wire    shape memory alloy    annealing temperature    shape memory effect    superelasticity
               出版日期:  2021-02-25      发布日期:  2021-02-23
ZTFLH:  TG113.25  
基金资助: 国家重点研发计划项目(2016YFE0111400)
通讯作者:  hezhirong01@163.com   
作者简介:  叶俊杰,男,硕士研究生,2019年起就读于陕西理工大学,现主要研究方向为形状记忆合金。
贺志荣,男,1982年、1986年、2004年分别在西安交通大学获工学学士、硕士、博士学位,1994年、2000年、2006年分别在日本筑波大学、东北大学、筑波大学作访问学者,陕西省“三五人才”“三秦学者”“优秀留学回国人员”,国家自然科学基金委、工信部、重庆市等科技项目评审专家,《材料科学基础》陕西省“一流本科课程”负责人,陕西理工大学“教学名师”,三级授级,硕士研究生导师。主要从事金属热处理、形状记忆合金的教学研究工作。主持或参与完成国家重点研发计划、陕西省科技统筹创新工程、陕西省自然科学基金等项目10余项,获科技成果奖4项,授权发明专利6件,编写教材2部,在J. Alloy. Compd、Mater. Sci. Eng. A、Mater. Sci. Eng. B、《金属学报》等刊物发表论文150余篇,其中SCI、EI收录70余篇。
引用本文:    
叶俊杰, 贺志荣, 张坤刚, 冯辉. 退火温度对Ti-50.8Ni-0.1Zr形状记忆合金丝记忆行为和力学性能的影响[J]. 材料导报, 2021, 35(4): 4118-4123.
YE Junjie, HE Zhirong, ZHANG Kungang, FENG Hui. Effect of Annealing Temperature on Memory Behaviors and Mechanical Properties of Ti-50.8Ni-0.1Zr Shape Memory Alloy Wire. Materials Reports, 2021, 35(4): 4118-4123.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100010  或          http://www.mater-rep.com/CN/Y2021/V35/I4/4118
1 Sun L, Huang W M, Ding Z,et al. Materials and Design, 2012, 33, 555.
2 Olander A.Zeitschrift für Kristallographie-Crystalline Materials, 1932, 83, 145.
3 Jani J M, Leary M, Subic A, et al. Materials and Design, 2014, 56, 1078.
4 Saghaian S M, Karaca H E, Tobe H, et al. Acta Materialia, 2017, 134, 211.
5 Shariat B S, Meng Q L, Mahmud A S, et al. Materials and Design, 2017, 124, 225.
6 Firstov G S, Humbeeck J V, Koval Y N. Materials Science and Enginee-ring A, 2003, 378, 2.
7 Otsuka K, Ren X. Materials Science and Engineering A, 1999, 273, 89.
8 He Z R, Wu P Z, Liu K K, et al. Materials Reports A:Review Papers, 2017, 31(10), 17 (in Chinese).
贺志荣, 吴佩泽, 刘康凯, 等.材料导报:综述篇, 2017, 31(10), 17.
9 He Z R, Liu K K, Wang F, et al. The Chinese Journal of Nonferrous Metals, 2019, 29(4), 742 (in Chinese).
贺志荣, 刘康凯, 王芳, 等.中国有色金属学报, 2019, 29(4), 742.
10 He Z R, Wang Q, Wang F, et al. Rare Metal Materials and Engineering, 2011, 40(11), 1998 (in Chinese).
贺志荣, 王启, 王芳, 等.稀有金属材料与工程, 2011, 40(11), 1998.
11 He Z R, Liu M Q. Materials Science and Engineering B, 2012, 177 (12), 986.
12 He Z R. Acta Metallurgica Sinica, 2008, 44(9), 1076 (in Chinese).
贺志荣.金属学报, 2008, 44(9), 1076.
13 Du Y Q, He Z R, Wang F, et al. Transactions of Materials and Heat Treatment, 2018, 39 (9), 30 (in Chinese).
杜雨青, 贺志荣, 王芳, 等.材料热处理学报, 2018, 39(9), 30.
14 Bozzolo G, Noebe R D, Mosca H O. Journal of Alloys and Compounds, 2005, 389(1), 80.
15 He Z R, Wang F, Wang Y S, et al. Acta Metallurgica Sinica, 2007, 43(12), 1293 (in Chinese).
贺志荣, 王芳, 王永善, 等. 金属学报, 2007, 43(12), 1293.
16 Inoue S, Sauada N, Namazu T. Vacuum, 2009, 83(3), 664.
17 Kim H Y, Mizutani M, Miyazaki S. Acta Materialia, 2009, 57(6),1920.
18 Teragama A, Nagai K, Kyogoka H. Materails Transactions, 2009, 50(10), 2446.
19 Eckelmeyer K H. Scripta Metallurgica, 1976, 10, 667.
20 Feng Z W, Qan D F, Gao B D, et al. Chinese Journal of Rare Metals, 2001, 25(1), 47 (in Chinese).
冯昭伟, 千东范, 高宝东,等. 稀有金属, 2001, 25(1), 47.
21 He Z R, Wang F. Metal Science and Heat Treatment, 2014, 56(5-6), 320.
22 Atli K C. Journal of Alloys and Compounds, 2016, 679, 260.
23 Liu Y,He Z R, Wang F, et al. Rare Metal Materials and Engineering, 2011, 40(8), 1412 (in Chinese).
刘艳, 贺志荣, 王芳, 等.稀有金属材料与工程, 2011, 40(8), 1412.
24 Feng H, He Z R, Wang F, et al. Heat Treatment of Metals, 2019, 44(3), 120 (in Chinese).
冯辉, 贺志荣, 王芳, 等. 金属热处理, 2019, 44(3), 120.
25 Wu B, Sun K X, Li H, et al. Journal of Vibration Engineering, 2000, 13(3), 129 (in Chinese).
吴波, 孙科学, 李惠, 等.振动工程学报, 2000, 13(3), 129.
26 Wang Q, He Z R, Wang Y S, et al. Acta Metallurgica Sinica, 2010, 46(7), 800 (in Chinese).
王启,贺志荣,王永善,等.金属学报, 2010, 46(7), 800.
27 Liu W, Zhao X Q. Chinese Journal of Aeronautics, 2009, 22(5), 540.
28 Jiang F, Liu Y, Yang H, et al. Acta Materialia, 2009, 57(16), 4773.
29 Semba H, Okabe N, Yamaji T, et al. Materials Transactions, 2006, 47(3), 772.
30 Wang R. Physical Testing and Chemical Analysis part A: Physical Testing, 2016, 52(10), 698 (in Chinese).
王荣.理化检验(物理分册), 2016, 52(10), 698.
[1] 李锐, 曾令碧, 刘腾, 王晓杰, 杨平安. 不同温度下纯Ni/NiTi合金的摩擦特性研究[J]. 材料导报, 2020, 34(Z1): 297-303.
[2] 李启泉,李岩,马悦辉. 钛基高温形状记忆合金进展综述[J]. 材料导报, 2020, 34(3): 3142-3147.
[3] 刘兵飞, 刘艳艳, 周蕊. 航空发动机变形齿的新材料设计与力学性能[J]. 材料导报, 2020, 34(2): 2117-2122.
[4] 李兴建, 白宝仕, 刘升, 苗玉杰, 郑朝晖, 丁小斌. 具有相分离结构的PMMA/PEG半互穿网络形状记忆高分子[J]. 材料导报, 2020, 34(2): 2142-2146.
[5] 刘博, 王社良, 李彬彬, 杨涛, 李昊, 刘洋, 何露. 一种考虑应变幅值和应变速率影响的超弹性SMA宏观唯象本构模型[J]. 材料导报, 2020, 34(14): 14161-14167.
[6] 王铁军, 杨博, 梁晨, 车洪艳, 秦巍, 曹睿. 退火温度对热轧态M390组织与性能的影响[J]. 材料导报, 2020, 34(12): 12122-12126.
[7] 刘博, 王社良, 何露, 李昊, 杨涛, 李彬彬. NiTi形状记忆合金丝的约束回复应力输出特性及本构模型[J]. 材料导报, 2020, 34(10): 10082-10087.
[8] 邹芹, 党赏, 李艳国, 王明智, 熊建超. Fe-基形状记忆合金的研究进展[J]. 材料导报, 2019, 33(23): 3955-3962.
[9] 毛虎, 杨宏亮, 史晓斌. 纳米晶NiTi形状记忆合金的研究进展[J]. 材料导报, 2019, 33(13): 2237-2242.
[10] 李云飞, 曾祥国. 基于不可逆热力学的Ni-Ti合金动态本构模型及其有限元实现[J]. 材料导报, 2019, 33(10): 1676-1680.
[11] 邵明增, 崔春娟, 杨洪波. 医用NiTi形状记忆合金表面氧化改性研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1181-1186.
[12] 袁勃, 曾磊, 钱明芳, 张学习, 耿林. 形状记忆合金弹热效应研究进展[J]. 材料导报, 2018, 32(17): 3033-3040.
[13] 余滨杉, 樊禹江, 王社良, 杨涛. 考虑加/卸载速率影响的Ti-Ni形状记忆合金简化本构模型[J]. 《材料导报》期刊社, 2017, 31(6): 153-160.
[14] 贺志荣, 吴佩泽, 刘康凯, 冯辉, 王家乐. Ni含量对激冷贫镍TiNi形状记忆合金薄带相变行为的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 17-20.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed