Please wait a minute...
材料导报  2020, Vol. 34 Issue (2): 2117-2122    https://doi.org/10.11896/cldb.18110092
  金属与金属基复合材料 |
航空发动机变形齿的新材料设计与力学性能
刘兵飞1, 刘艳艳2, 周蕊1
1 中国民航大学航空工程学院,天津 300300
2 中国民航大学中欧航空工程师学院,天津 300300
Innovative Material Design and Mechanical Properties Study of Variable Geometry Chevron for Aeroengine
LIU Bingfei1, LIU Yanyan2, ZHOU Rui1
1 Aeronautical Engineering Institute,Civil Aviation University of China,Tianjin 300300,China
2 Sino-European Institute of Aviation Engineering,Civil Aviation University of China,Tianjin 300300,China
下载:  全 文 ( PDF ) ( 2892KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为了克服航空发动机变形齿在循环使用过程中容易出现螺栓松弛和脱落等问题,本研究拟将呈梯度分布状态的形状记忆合金材料应用于航空发动机变形齿的设计中,构成由碳纤维复合板基片和形状记忆合金材料梯度复合而成的功能梯度变形齿装置。首先,给出了呈梯度分布状态的形状记忆合金复合材料层合板在变温作用下的热弹性本构模型;然后,对形状记忆合金层合板进行不同层数和组分含量设计,根据不同设计方案对航空发动机变形齿装置进行有限元建模,仿真分析该装置在变温作用下的应力分布、尖端挠度和应变分布等热力学性能;最后,结合正交分析,讨论不同设计因素对变形齿力学性能的影响。本工作可为形状记忆合金智能材料的进一步研究及其在航空航天等领域的工程应用提供理论基础与技术支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘兵飞
刘艳艳
周蕊
关键词:  航空发动机变形齿  功能梯度材料  形状记忆合金  有限元    
Abstract: The variable geometry chevron (VGC) of aeroengine commonly suffered from flaws like bolt loosening and falling off during the cyclic service process. Aiming at solving this problem, we intended to introduce the functional gradient shape memory alloy into the design of aeroengine VGC, and further obtain a functional gradient VGC device consisted of a carbon fiber composite plate substrate and a shape memory alloy. Firstly, the thermoelastic constitutive model of shape memory alloy composite laminates with functionally gradient distribution was established. Then, the shape memory alloy laminates were designed with various layers and component contents, and the finite element modeling of the aeroengine VGC device was performed in light of diverse design schemes. Further simulation analysis on the thermodynamic properties of the VGC device, including stress distribution, tip deflection and strain distribution under the action of temperature variation was conducted according to the finite element modeling. Finally, the impact of different design factors on the mechanical properties of VGC was discussed with reference to the orthogonal analysis. Our research findings may pave the way for further research of novel shape memory alloy intelligent materials and their engineering applications in aerospace and related fields.
Key words:  variable geometry chevron for aeroengine    functional gradient materials    shape memory alloy    finite element
               出版日期:  2020-01-25      发布日期:  2020-01-03
ZTFLH:  V232  
基金资助: 国家自然科学基金(11502284;51608522;51505483);中央高校基本科研业务费(3122018D018)
通讯作者:  reaterbutter@163.com   
作者简介:  刘兵飞,男,中国民航大学副教授,硕士研究生导师,北京交通大学固体力学专业博士,研究方向为智能材料与结构力学,先后主持或参与各级项目多项,发表SCI、EI、北大核心期刊论文多篇;周蕊,1983年生,博士,主要研究方向为塑性成形理论及数值模拟。
引用本文:    
刘兵飞, 刘艳艳, 周蕊. 航空发动机变形齿的新材料设计与力学性能[J]. 材料导报, 2020, 34(2): 2117-2122.
LIU Bingfei, LIU Yanyan, ZHOU Rui. Innovative Material Design and Mechanical Properties Study of Variable Geometry Chevron for Aeroengine. Materials Reports, 2020, 34(2): 2117-2122.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110092  或          http://www.mater-rep.com/CN/Y2020/V34/I2/2117
1 Hartl D J, Lagoudas D C, Mabe J T, et al. Smart Materials and Structures,2010, 19, 015020.2 Hartl D J, Mooney J T, Lagoudas D C, et al. Smart Materials and Structure, 2010, 19, 015021.3 Mabe J H, Cabell R H, Butler G W. In: 11th AIAA/CEAS Aerpacpustics Conference. Monterey, 2005, pp.1.4 Mabe J H. Journal of Acoustical Society America,2008, 123, 5487.5 Hartl D J, Lagoudas D C. Proceedings of SPIE, 2007, 6529, 65293Z1.6 Mabe J H, Calkins F T, Butler G W. In:47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Confere. Newport, Rhode Island,2006,pp.1.7 Turner T, Cabell R H, Cano R J, et al. Proceedings of SPIE, 2007, 6525, 65250J.8 Machairas T, Hartl D J, Lagoudas D C. In: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Confere. Boston, Massachusetts,2013,pp.1.9 Han J C, Xu L, Wang B L, et al. Solid Rocket Technology, 2004, 27 (3), 207(in Chinese).韩杰才,徐丽,王保林,等. 固体火箭技术, 2004, 27 (3), 207.10 Zheng Y, Woo C H, Wang B. Journal of Applied Physics, 2007, 101, 116103.11 Su X L, Gao Y W. Journal of Solid Mechanics, 2012, 33(1), 75(in Chinese).宿星亮,高原文. 固体力学学报, 2012, 33(1),75.12 Wang Y, Xu R Q, Ding H J. Composite Structures, 2010, 92(7), 1683.13 Wang B L, Du S Y, Han J C. Progress in Mechanics, 1999, 29(4), 528(in Chinese).王保林,杜善义,韩杰才. 力学进展, 1999, 29(4), 528.14 Liu B F, Dui G S, Yang S Y. European Journal of Mechanics A-Solid, 2013, 40, 139.15 Lester B T, Chenisky Y, Lagoudas D C. Smart Materials and Structures, 2011, 20, 094002.16 Fu Y Q, Du H J, Zhang S. Materials Letters, 2003, 57, 2995.17 Mahmud A S, Liu Y N, Nam T H. Smart Materials and Structures, 2008, 17, 015031.18 Birman V. Smart Materials and Structures, 1997, 6, 278.19 Bu X Z. Engineering measurement error and data processing, National Defense Industry Press, China, 2015(in Chinese).卜雄洙. 工程测量误差与数据处理, 国防工业出版社, 2015.
[1] 赵宇航, 王永旺. 硅酸盐胶黏剂在高温磨蚀条件下的退化行为[J]. 材料导报, 2020, 34(Z1): 181-184.
[2] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[3] 李锐, 曾令碧, 刘腾, 王晓杰, 杨平安. 不同温度下纯Ni/NiTi合金的摩擦特性研究[J]. 材料导报, 2020, 34(Z1): 297-303.
[4] 李启泉,李岩,马悦辉. 钛基高温形状记忆合金进展综述[J]. 材料导报, 2020, 34(3): 3142-3147.
[5] 肖阳, 秦海勤, 徐可君. 基于Bodner-Partom理论的FGH96合金本构建模研究[J]. 材料导报, 2020, 34(16): 16125-16130.
[6] 刘博, 王社良, 李彬彬, 杨涛, 李昊, 刘洋, 何露. 一种考虑应变幅值和应变速率影响的超弹性SMA宏观唯象本构模型[J]. 材料导报, 2020, 34(14): 14161-14167.
[7] 刘博, 王社良, 何露, 李昊, 杨涛, 李彬彬. NiTi形状记忆合金丝的约束回复应力输出特性及本构模型[J]. 材料导报, 2020, 34(10): 10082-10087.
[8] 吴奇, 李晓延, 孙鲁阳, 王小鹏. 2219铝合金焊接接头软化模型的建立与应用[J]. 材料导报, 2020, 34(10): 10138-10143.
[9] 丁新东, 曹新明. 不同膨胀剂掺量的钢管混凝土短柱轴压试验研究[J]. 材料导报, 2019, 33(Z2): 327-330.
[10] 王储, 周珏辉, 周添, 陈亦伦, 宋荟荟. 大功率电磁波照射下超材料多物理场耦合行为[J]. 材料导报, 2019, 33(z1): 84-88.
[11] 崔海坡, 张伟东, 宋成利, 王成勇, 张涛, 张春晓, 程千莉. 微创血管夹不同齿型对血管力学性能的影响[J]. 材料导报, 2019, 33(z1): 432-435.
[12] 李地红, 夏娴, 高群, 代函函, 于海洋. 镶嵌式加固混凝土构件加固区域力学行为的有限元分析[J]. 材料导报, 2019, 33(z1): 249-253.
[13] 夏娴, 李地红, 高群, 代函函, 于海洋. 基于ABAQUS的镶嵌式混凝土加固、修复技术研究[J]. 材料导报, 2019, 33(z1): 269-273.
[14] 刘立君, 张一帆, 马川, 刘晓燕. 非均匀SiO2-H2O纳米流体辐射特性研究[J]. 材料导报, 2019, 33(8): 1268-1271.
[15] 苏继龙, 刘明财. 结构参数对薄膜型隔声超材料带隙移位特性的影响[J]. 材料导报, 2019, 33(8): 1298-1301.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed