Please wait a minute...
材料导报  2020, Vol. 34 Issue (16): 16125-16130    https://doi.org/10.11896/cldb.19080111
  金属与金属基复合材料 |
基于Bodner-Partom理论的FGH96合金本构建模研究
肖阳, 秦海勤, 徐可君
海军航空大学青岛校区,航空机械工程与指挥系,青岛 266041
Study on Constitutive Model for FGH96 Superalloy Based on Bodner-Partom Theory
XIAO Yang, QIN Haiqin, XU Kejun
Department of Aviation Mechanical Engineering and Management in Qingdao Branch, Naval Aviation University, Qingdao 266041, China
下载:  全 文 ( PDF ) ( 3266KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为研究某航空发动机涡轮盘典型材料粉末高温合金FGH96高温下的变形特性,基于Bodner-Partom(B-P)统一粘塑性本构理论对其高温下的力学行为进行本构建模。开展了550 ℃下的单轴拉伸及低周疲劳试验,利用Levenberg-Marquardt算法对模型参数进行了优化识别。采用隐式积分算法将本构方程离散为差分方程组,推导了一致切线刚度矩阵,为提高积分过程的精度和可靠性,引入以非弹性应变增量为度量的积分步长控制策略。通过用户子程序接口UMAT将B-P模型引入到ABAQUS有限元软件中进行数值模拟。结果表明:高温下FGH96材料表现出一定的率相关性及循环软化特性,模拟曲线与试验结果平均相对误差在10%以内,具有较好的一致性,说明B-P模型能够较好地模拟FGH96合金高温下的变形特性,验证了本实验模型与UMAT子程序的准确性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖阳
秦海勤
徐可君
关键词:  粉末高温合金  变形特性  粘塑性  本构模型  有限元    
Abstract: In order to study the deformation characteristics of a typical material powder metallurgy superalloy FGH96 used in aeroengine turbine disk, the Bodner-Partom (B-P) unified viscoplastic constitutive theory was used to construct its mechanical behavior of FGH96 at high temperature. Uniaxial tension and low cycle fatigue tests were carried out at 550 ℃, and the model parameters were identified and optimized by Levenberg-Marquardt algorithm. In order to improve the accuracy and reliability of the integration process, an integral step control strategy based on inelastic strain increment was introduced. The B-P model was introduced into ABAQUS finite element software through the user material subroutine UMAT for numerical simulation. The results showed that the FGH96 superalloy exhibits a certain rate dependence and cyclic softening characteristics at high temperature. The average relative error between the simulation curve and the test results is less than 10%, which shows that the B-P model can better simulate the deformation characteristics of FGH96 superalloy at high temperature, and the accuracy of the model and the UMAT subroutine is verified.
Key words:  powder metallurgy superalloy    deformation characteristics    viscoplastic    constitutive equation    finite element
               出版日期:  2020-08-25      发布日期:  2020-07-24
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金(51605487);国家自然科学基金青年基金(61803071)
通讯作者:  xukejunxuran@126.com   
作者简介:  肖阳,海军航空大学青岛校区航空机械工程与指挥系博士研究生。2016年12月毕业于海军航空大学,获得硕士学位。主要从事航空发动机结构强度及可靠性的研究。
徐可君,海军航空大学青岛校区航空机械工程与指挥系教授,博士研究生导师,主要从事航空发动机故障诊断与健康评估的研究。
引用本文:    
肖阳, 秦海勤, 徐可君. 基于Bodner-Partom理论的FGH96合金本构建模研究[J]. 材料导报, 2020, 34(16): 16125-16130.
XIAO Yang, QIN Haiqin, XU Kejun. Study on Constitutive Model for FGH96 Superalloy Based on Bodner-Partom Theory. Materials Reports, 2020, 34(16): 16125-16130.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080111  或          http://www.mater-rep.com/CN/Y2020/V34/I16/16125
1 Wang S Y, Li H Q, Yang H T. Journal of Aeronautical Materials, 2007, 27(5), 30(in Chinese).
王淑云, 李惠曲, 杨洪涛.航空材料学报, 2007, 27(5), 30.
2 Yang Z G. Study on the mechanics performance of nickel-base powder metallurgy(PM) superalloy and applying in turbine disk. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2007(in Chinese).
杨治国. 粉末高温合金材料的力学特性及其在涡轮盘上的应用研究. 博士学位论文, 南京航空航天大学, 2007.
3 Beijing Institute of Aeronautical Materials. Materials technology of aeronautics, Aviation Industry Press, China, 2013(in Chinese).
北京航空材料研究院.航空材料技术, 航空工业出版社, 2013.
4 Zou J W, Wang W X. Journal of Aeronautical Materials, 2006, 26(3), 244(in Chinese).
邹金文, 汪武祥.航空材料学报, 2006, 26 (3), 244.
5 Zhou L, Wang H, Zhang G D, et al. Journal of Plasticity Engineering, 2009, 16(5), 149(in Chinese).
周磊, 王宏, 张国栋, 等.塑性工程学报, 2009, 16(5), 149.
6 Lei J F, Zheng Y, Yu J, et al. Aerospace Materials & Technology, 2011(6), 18(in Chinese).
雷景富, 郑勇, 余俊, 等.宇航材料工艺, 2011(6), 18.
7 Wu K, Liu G Q, Hu M F, et al. Materials China, 2010, 29(3), 23(in Chinese).
吴凯, 刘国权, 胡木芙, 等.中国材料进展, 2010, 29(3), 23.
8 Wang X F, Zhou X M, Mu S L, et al. Materials Reports A:Review Papers, 2012, 26(4), 108(in Chinese).
王晓峰, 周晓明, 穆松林, 等.材料导报:综述篇, 2012, 26(4), 108.
9 Er Q L, Dong J X, Zhang M C, et al. Chinese Journal of Engineering, 2016, 38(2), 248(in Chinese).
佴启亮, 董建新, 张麦仓, 等.工程科学学报, 2016, 38(2), 248.
10 Fu Q F, Yang X L, Liu K M. Heat Treatment Technology and Equipment, 2018, 39(3), 71(in Chinese).
付青峰, 杨细莲, 刘克明.热处理技术与装备, 2018, 39(3), 71.
11 Guo M W, Liu C R, Zheng X P, et al. Hot Working Technology, 2017, 46(20), 11(in Chinese).
郭茂文, 刘春荣, 郑雪萍, 等.热加工工艺, 2017, 46(20), 11.
12 Zhang Y W, Liu J T. Materials China, 2013, 32(1), 1(in Chinese).
张义文, 刘建涛.中国材料进展, 2013, 32(1), 1.
13 Wang Y R, Wang X C, Zhong B, et al. International Journal of Fatigue, 2019, 122, 116.
14 Zhong B, Wang Y R, Wei D S, et al. International Journal of Fatigue, 2017, 109, 26.
15 Miao G L, Yang X G, Shi D Q. Journal of Aerospace Power, 2017, 32(2), 424(in Chinese).
苗国磊, 杨晓光, 石多奇.航空动力学报, 2017, 32(2), 424.
16 Feng Y F, Zhou X M, Zou J W, et al. International Journal of Minerals Metallurgy and Materials, 2019, 26(4), 493.
17 Wang X, Chen X, Wang X F, et al. Rare Metal Materials and Enginee-ring, 2019, 48(1), 269(in Chinese).
王欣, 陈星, 王晓峰, 等.稀有金属材料与工程, 2019, 48(1), 269.
18 Yang J, Li J L, Dong D K, et al. Journal of Aeronautical Materials, 2019, 39(2), 33(in Chinese).
杨俊, 李京龙, 董登科, 等.航空材料学报, 2019, 39(2), 33.
19 Zhao J Q, Liu J, Zhang Y D, et al. Powder Metallurgy Industry, 2015, 35(5), 47(in Chinese).
赵剑青, 刘晶, 张银东, 等.粉末冶金工业, 2015, 35(5), 47.
20 Tian G F, Chen Y, Wang Y. Powder Metallurgy Technology, 2018, 36(6), 403(in Chinese).
田高峰, 陈阳, 汪煜.粉末冶金技术, 2018, 36(6), 403.
21 Fang B, Tian G F, Zhen J, et al. International Journal of Minerals Metallurgy and Materials, 2019, 26(5), 657.
22 Liu S, Zhang X, Yu H X, et al. Aeronautical Manufacturing Technology, 2019, 62(1), 72(in Chinese).
刘帅, 张雪, 于海鑫, 等.航空制造技术, 2019, 62(1), 72.
23 Wang C Y, Dong Y P, Song X J, et al. Journal of Aeronautical Mate-rials, 2016, 36(5), 14(in Chinese).
王超渊, 东赟鹏, 宋晓俊, 等.航空材料学报, 2016, 36(5), 14.
24 Chen M Y, Bai P C, Zhang A F, et al. Materials Reports B:Research Papers, 2015, 29(10), 101(in Chinese).
陈梦洋, 白朴存, 张安峰, 等.材料导报:研究篇, 2015, 29(10), 101.
25 Zhao J P, Yuan S Q, Tao Y, et al. Materials Reports B:Research Papers, 2010, 24(9), 65(in Chinese).
赵军普, 袁守谦, 陶宇, 等.材料导报:研究篇, 2010, 24(9), 65.
26 Qin Z J, Liu C Z, Wang Z, et al. The Chinese Journal of Nonferrous Metals, 2016, 26(1), 50(in Chinese).
秦子珺, 刘琛仄, 王子, 等.中国有色金属学报, 2016, 26(1), 50.
27 Fu H, Wang M Y, Ji Z, et al. Powder Metallurgy Technology, 2018, 36(3), 201(in Chinese).
傅豪, 王梦雅, 纪箴, 等.粉末冶金技术, 2018, 36(3), 201.
28 Liu C K, Wei Z W, Zhang J Q, et al. Journal of Aeronautical Materials, 2018, 38(3), 40(in Chinese).
刘昌奎, 魏振伟, 张佳庆, 等.航空材料学报, 2018, 38(3), 40.
29 Chavoshi S Z, Jiang J, Wang Y,et al. International Journal of Mechanical Sciences, 2018, 138, 110.
30 Fang B, Ji Z, Tian G F, et al. Rare Metal Materials and Engineering, 2014, 43(12), 3089(in Chinese).
方彬, 纪箴, 田高峰, 等.稀有金属材料与工程, 2014, 43(12), 3089.
31 Bodner S R, Partom Y. Journal of Applied Mechanics, 1975, 42(1), 385.
32 Yang X G, Shi D Q. Viscoplastic constitutive theory and application, Defense Industry Press, China, 2013(in Chinese).
杨晓光, 石多奇. 粘塑性本构理论及其应用, 国防工业出版社, 2013.
33 Lu K H, Zhang H J, Jia P C. Journal of Propulsion Technology, 2019, 40(2), 416.
卢孔汉, 张宏建, 贾鹏超.推进技术, 2019, 40(2), 416.
34 Kang G Z. Engineering Mechanics, 2005, 22(3), 204(in Chinese).
康国政.工程力学, 2005, 22(3), 204.
35 Hu X T, Song Y D. Mechanical Science and Technology for Aerospace Engineering, 2009, 28(2), 196(in Chinese).
胡绪腾, 宋迎东.机械科学与技术, 2009, 28(2), 196.
36 Feng M H. A visco-plastic unified constitutive theory for deformation. Ph.D. Thesis, Dalian University of Technology, China, 2000(in Chinese).
冯明珲. 粘弹塑性统一本构理论. 博士学位论文, 大连理工大学, 2000.
[1] 冯振宇, 范保鑫, 王纳斯丹, 韩雪飞, 李翰, 吴敬涛. 基于UMATHT子程序的玻璃纤维/乙烯基酯热响应数值模拟[J]. 材料导报, 2021, 35(2): 2191-2198.
[2] 赵宇航, 高莹, 王永旺, 陈东, 张云峰. 粉煤灰制硅酸盐防腐砖在复杂工况下的性能退化研究[J]. 材料导报, 2020, 34(Z2): 304-307.
[3] 樊卓志, 张书彦, 温树文, 向明, 林晏民, 张志明, 钟寿军, 王青松. 冷镦钢M6平头螺丝成型过程热-力耦合数值模拟研究[J]. 材料导报, 2020, 34(Z2): 399-406.
[4] 赵宇航, 王永旺. 硅酸盐胶黏剂在高温磨蚀条件下的退化行为[J]. 材料导报, 2020, 34(Z1): 181-184.
[5] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[6] 刘松浩, 司家勇, 陈龙, 徐梦杰. FGH4096合金含高应变速率的流变行为和热加工图构建[J]. 材料导报, 2020, 34(20): 20123-20129.
[7] 任重, 黄兴元, 柳和生. 塑料微管气辅挤出成型实验与机理分析[J]. 材料导报, 2020, 34(20): 20193-20198.
[8] 刘兵飞, 刘艳艳, 周蕊. 航空发动机变形齿的新材料设计与力学性能[J]. 材料导报, 2020, 34(2): 2117-2122.
[9] 杨西荣, 郝凤凤, 罗雷, 刘晓燕, 马炜杰, 王立元. 大角度ECAP变形模具制备纯钛的变形织构演化模拟[J]. 材料导报, 2020, 34(16): 16077-16082.
[10] 刘博, 王社良, 李彬彬, 杨涛, 李昊, 刘洋, 何露. 一种考虑应变幅值和应变速率影响的超弹性SMA宏观唯象本构模型[J]. 材料导报, 2020, 34(14): 14161-14167.
[11] 吴奇, 李晓延, 孙鲁阳, 王小鹏. 2219铝合金焊接接头软化模型的建立与应用[J]. 材料导报, 2020, 34(10): 10138-10143.
[12] 王朝阳, 周全, 杨鸥, 霍静思, 王海涛. 钢筋锈蚀率对钢筋与混凝土黏结性能的影响[J]. 材料导报, 2019, 33(Z2): 309-316.
[13] 丁新东, 曹新明. 不同膨胀剂掺量的钢管混凝土短柱轴压试验研究[J]. 材料导报, 2019, 33(Z2): 327-330.
[14] 王储, 周珏辉, 周添, 陈亦伦, 宋荟荟. 大功率电磁波照射下超材料多物理场耦合行为[J]. 材料导报, 2019, 33(z1): 84-88.
[15] 崔海坡, 张伟东, 宋成利, 王成勇, 张涛, 张春晓, 程千莉. 微创血管夹不同齿型对血管力学性能的影响[J]. 材料导报, 2019, 33(z1): 432-435.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed