Please wait a minute...
材料导报  2020, Vol. 34 Issue (16): 16077-16082    https://doi.org/10.11896/cldb.19070131
  金属与金属基复合材料 |
大角度ECAP变形模具制备纯钛的变形织构演化模拟
杨西荣, 郝凤凤, 罗雷, 刘晓燕, 马炜杰, 王立元
西安建筑科技大学冶金工程学院,西安 710055
Simulation of Deformation Texture Evolution of Pure Titanium Prepared by Large Angle ECAP Deformation Die
YANG Xirong, HAO Fengfeng, LUO Lei, LIU Xiaoyan, MA Weijie, WANG Liyuan
School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
下载:  全 文 ( PDF ) ( 7748KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究等径弯曲通道变形(ECAP)对纯钛变形织构的影响,本研究采用135°模具在室温条件下以C方式对纯钛实施2道次ECAP变形,然后利用X射线衍射(XRD)仪检测了原始纯钛以及ECAP变形后纯钛的织构,并与VPSC自洽理论模型计算的ECAP变形织构进行对比分析。结果表明:原始纯钛组织为等轴状,晶界清晰,其{0002}晶面极图的最大极密度为2.6,且主要为P1织构,易发生柱面滑移,同时压缩孪生系处于易激活状态。而经1道次ECAP变形后的织构转变为P织构,同时出现C2织构。经过2道次ECAP变形后,P织构消失,只存在C2织构。VPSC自洽理论模型计算织构与实验织构大致相同,且2道次ECAP变形之后的纯钛试样均易发生基面滑移、拉伸孪生系更易被激活。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨西荣
郝凤凤
罗雷
刘晓燕
马炜杰
王立元
关键词:  纯钛  等径弯曲通道变形(ECAP)  粘塑性自洽模型(VPSC)  织构  Schmid因子    
Abstract: Pure titanium was processed by two passes of ECAP with 135° die via route C at room temperature. The effect of ECAP on the texture of pure titanium was studied by X-ray diffraction (XRD). The original texture and ECAP deformed texture of pure titanium were measured and compared with those of pure titanium calculated by VPSC self-consistent theoretical model.The results show that the original pure titanium is composed of equiaxed grains and the grain boundary is clear. The maximum polar density of {0002} crystal plane is 2.6. The main texture is P1 texture, which is prone to cylinder slip and the compression twin system is easy to be activated. The original texture of pure titanium transforms into P texture after 1 pass of ECAP, and the C2 texture appears at the same time. After 2 passes of ECAP, the P texture disappears, and only the C2 texture exists. The texture calculated by the VPSC is almost similar with the experimental texture, which is prone to basal slip and tension twins are more likely to be activated.
Key words:  pure titanium    equal-channel angular pressing (ECAP)    visco-plastic self-consistent (VPSC)    texture    Schmid factor
               出版日期:  2020-08-25      发布日期:  2020-07-24
ZTFLH:  TG146  
基金资助: 国家自然科学基金(51474170)
通讯作者:  lazy_yxr@ qq.com   
作者简介:  杨西荣,西安建筑科技大学教授,博士研究生导师。1997年研究生毕业于西安建筑科技大学金属塑性加工专业留校至今。一直从事金属材料塑性加工方面的教学和科研工作,材料加工工程学科骨干教师。在国内外学术期刊上发表论文100余篇,授权专利2项。团队主要研究方向包括超细晶材料及组织性能控制、材料组织与性能计算机模拟。主持参与国家级项目3项,主持参与省部级科研项目10余项,厅局级科研项目10余项。获陕西高等学校科学技术奖一等奖1项。
郝凤凤,西安建筑科技大学硕士研究生,2017年6月毕业于西安建筑科技大学,获得工学学士学位。现为西安建筑科技大学冶金工程学院硕士研究生,在杨西荣教授的指导下进行研究。目前主要研究领域为超细晶材料的组织与性能计算机模拟。
引用本文:    
杨西荣, 郝凤凤, 罗雷, 刘晓燕, 马炜杰, 王立元. 大角度ECAP变形模具制备纯钛的变形织构演化模拟[J]. 材料导报, 2020, 34(16): 16077-16082.
YANG Xirong, HAO Fengfeng, LUO Lei, LIU Xiaoyan, MA Weijie, WANG Liyuan. Simulation of Deformation Texture Evolution of Pure Titanium Prepared by Large Angle ECAP Deformation Die. Materials Reports, 2020, 34(16): 16077-16082.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070131  或          http://www.mater-rep.com/CN/Y2020/V34/I16/16077
1 Beyerlein I J, Tóth L S. Progress in Materials Science, 2009, 54(4), 427.
2 Wu Z G. World Nonferrous Metals, 2018(19), 158(in Chinese).
吴志光. 世界有色金属, 2018(19), 158.
3 Ahmadi S, Sedighi M. Journal of Mechanical Science & Technology, 2017, 31(9), 4189.
4 Moradi M, Nili-Ahmadabadi M, Heidarian B. International Journal of Material Forming, 2009, 2(1), 85.
5 Wang L, Zhao X C, Yang X R, et al. Chinese Journal of Rare Metals, 2015, 39(6), 570(in Chinese).
王力, 赵西成, 杨西荣, 等. 稀有金属, 2015, 39(6), 570.
6 Zhang H J, Salvati E, Papadaki C, et al. Key Engineering Materials, 2019, 793, 17.
7 Dash M K, Saroja S, John R, et al. Journal of Materials Engineering and Performance, 2019, 28(1), 263.
8 Li M J, Gou C, Zhang B S, et al. In: Conference Record of the 3rd Beijing Nuclear Society Nuclear Application Technology Academic Exchange Conference. Yenki, 2004, pp. 97(in Chinese).
李眉娟, 勾成, 张百生, 等. 第三届北京核学会核应用技术学术交流会. 延吉, 2004, pp. 97.
9 Chen X Q, Yang X R, Liu X Y, et al. Chinese Journal of Rare Metals, 2015, 39(11), 975(in Chinese).
陈晓奇, 杨西荣, 刘晓燕, 等. 稀有金属, 2015, 39(11), 975.
10 Alexandrov I V, Zhilina M V, Scherbakov A V, et al. In: Materials Science Forum. Switzerland, 2005, pp. 785.
11 Gu C F, Tóth L S. Acta Materialia, 2011, 59(14), 5749.
12 Jia P B. Mesomechanics simulation of pure Zr processed by mutipass of ECAP. Master’s Thesis, Xi’an University of Architecture and Technology, China, 2016(in Chinese).
贾鹏博. 纯锆多道次ECAP变形细观有限元模拟. 硕士学位论文, 西安建筑科技大学, 2016.
13 Molinari A, Canova G R, Ahzi S. Acta Metallurgica, 1987, 35(12), 2983.
14 Zheng H L, Yang H, Li H W, et al. Journal of Plasticity Engineering, 2013, 20(1), 95(in Chinese).
郑华雷, 杨合, 李宏伟, 等. 塑性工程学报, 2013, 20(1), 95.
15 Guo X D, Seefeldt M. Journal of Materials Science, 2017, 52(13), 8132.
16 Beausir B, Tóth L S, Neale K W. Acta Materialia, 2007, 55(8), 2695.
[1] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[2] 石晓辉, 曹祖涵, 张敏, 郭瑞鹏, 乔珺威. 基于位错密度分析的Ti-8Al-1Mo-1V钛合金片层组织在热轧及退火过程中的演变机制[J]. 材料导报, 2020, 34(12): 12101-12104.
[3] 肖乾坤, 朱政强, 李铭锋. 紫铜超声波焊接微观结构演变及再结晶研究[J]. 材料导报, 2020, 34(10): 10157-10161.
[4] 郝时嘉, 陆政, 李国爱, 于娟. 高性能铝锂合金关键力学性能各向异性的影响因素及控制措施[J]. 材料导报, 2019, 33(Z2): 389-393.
[5] 陈琛辉, 蒋璐瑶, 刘成龙, 黄伟九, 郭勇义, 胥桥梁. 搅拌摩擦加工细晶TA2工业纯钛晶粒长大规律[J]. 材料导报, 2019, 33(8): 1367-1370.
[6] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[7] 郑国明, 李磊, 毛小南, 蔡建华, 吴聪, 雷磊. 钛合金BCC↔HCP相变的变体选择及其对晶体取向的影响[J]. 材料导报, 2019, 33(17): 2910-2917.
[8] 俞良良, 张郑, 王快社, 王文, 贾少伟. 搅拌摩擦加工对AZ31镁合金微观组织及力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1289-1293.
[9] 何承绪, 杨富尧, 孟利, 刘洋, 高洁, 马光, 韩钰, 陈新. 薄规格取向硅钢中晶粒取向和尺寸对Goss晶粒异常长大的影响[J]. 《材料导报》期刊社, 2018, 32(4): 606-610.
[10] 李坤, 贾涓, 熊玮, 谢欢, 宋新莉. 高强IF钢热镀锌层织构分析[J]. 材料导报, 2018, 32(24): 4334-4338.
[11] 彭晓文, 陈冷. 缓冲层Ta对退火Co/Cu/Co薄膜微观结构和界面互扩散的影响[J]. 材料导报, 2018, 32(22): 3931-3935.
[12] 祝佳林, 刘施峰, 柳亚辉, 姬静利, 李丽娟. 冷轧高纯钽板退火过程中微观组织及织构演变的梯度效应[J]. 材料导报, 2018, 32(20): 3595-3600.
[13] 马光,陈新,卢理成,信冬群,孟利,王浩,程灵,杨富尧. 薄规格取向硅钢二次再结晶过程中Goss织构演变的Monte Carlo模拟[J]. 《材料导报》期刊社, 2018, 32(2): 313-315.
[14] 邱兆岭, 陈文刚, 环鹏程, 李创业. 表面织构参数对渗氮304钢在纳米微粒添加剂润滑油作用下摩擦特性的影响[J]. 材料导报, 2018, 32(18): 3217-3222.
[15] 王运雷,张 杰,龚丽娟. 中间退火及成品退火速率对高压阳极铝箔微观组织的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1612-1617.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed