Please wait a minute...
材料导报  2020, Vol. 34 Issue (10): 10157-10161    https://doi.org/10.11896/cldb.19040120
  金属与金属基复合材料 |
紫铜超声波焊接微观结构演变及再结晶研究
肖乾坤, 朱政强, 李铭锋
南昌大学机电工程学院,南昌 330031
Research on Microstructure Evolution and Recrystallization of Ultrasonic Welding in Copper
XIAO Qiankun, ZHU Zhengqiang, LI Mingfeng
College of Mechanical and Electrical Engineering, Nanchang University, Nanchang 330031, China
下载:  全 文 ( PDF ) ( 5750KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 三维金属波导元件(包含接收信号孔、本振信号孔和耦合孔)是下一代射电望远镜的关键器件。超声增材为制备该波导元件提供了一种全新的方法,而紫铜薄片的有效焊接是该方法中最关键的工艺之一。当前对紫铜超声波的研究主要集中在焊接参数优化上,鲜有关于紫铜超声波焊接再结晶的研究。本工作采用电子背散射衍射(EBSD)技术观察紫铜超声波点焊的微观组织结构以及织构变化,研究紫铜超声波点焊的再结晶过程。结果表明:超声波焊接作用下紫铜焊接界面处的平均尺寸从20 μm减小到1~2 μm,说明超声波焊接细化了界面处晶粒;原始紫铜基体内主要包含具有大角度晶界(HAGBs)的粗大晶粒,而紫铜焊接接头界面处则出现了大量的小角度晶界(LAGBs)、亚晶和细小的等轴晶粒;原始紫铜中主要存在着铜型织构{112}〈111〉以及立方织构{001}〈100〉,而超声焊接后试样的织构主要有剪切织构{111}〈143〉、{111}〈110〉与{221}〈122〉,其中在焊接界面处存在大量重新生成的细小立方织构{100}〈001〉和剪切织构{111}〈110〉;在应变较小区域,通常发生不连续动态再结晶DDRX,此时再结晶形核方式为晶界弓出形核方式,而在应变较大区域则以连续动态再结晶CDRX为主,再结晶形核方式与亚晶相关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖乾坤
朱政强
李铭锋
关键词:  紫铜  超声波焊接  EBSD  再结晶  织构    
Abstract: Three-dimensional metal waveguide element which includes received signal holes, local vibration signal holes and coupling holes is the key device of the next generation radio telescope. Ultrasonic augmentation provides a new method for fabricating the waveguide element, and the effective welding of copper sheet is one of the most important processes in this method. Previous studies on ultrasonic welding of red copper mainly focused on the optimal welding process, and few researches on recrystallization of copper ultrasonic welding were carried out. In this paper, Electron Backscattered Diffraction (EBSD) technique was used to observe the microstructure and texture changes of ultrasonic spot welding of copper, and the recrystallization process of ultrasonic spot welding of copper was studied.The results show :The average size at the interface of copper is reduced from 20 μ m to 1—2 μ m under the action of ultrasonic welding, which indicates that the grain size at the interface is refined by ultrasonic welding. There are mainly copper texture {112}〈111〉 and cubic texture cube {001}〈100〉 in the original red copper. After ultra-sonic welding, there are mainly shear textures {111}〈143〉, {111}〈110〉 and {221}〈122〉, in which a large number of regenerated fine cuboidal textures {100}〈001〉 and shear textures {111}〈110〉 exist at the welding interface. In the region with the small strain, discontinuous dynamic recrystallization DDRX usually occurs. The recrystallization nucleation mode is the grain boundary nucleation mode, while in the larger strain region, the continuous dynamic recrystallization CDRX is dominant. The crystalline nucleation form is related to the subgrain.
Key words:  copper    ultrasonic welding    electron backscattered diffraction(EBSD)    recrystallization    texture
                    发布日期:  2020-04-26
ZTFLH:  TG405  
基金资助: 国家自然科学基金(51365039);国家自然科学基金委员会-中国科学院天文联合基金 (U1731118)
通讯作者:  朱政强,南昌大学,教授,主要从事超声增材制造、高强钢电阻点焊等先进制造技术研究,在国内外重要期刊发表论文60余篇,SCI、EI检索40多篇。zhuzhq01@163.com   
作者简介:  肖乾坤,工学硕士研究生,主要研究方向为金属超声波焊接过程中组织演变及连接机理。
引用本文:    
肖乾坤, 朱政强, 李铭锋. 紫铜超声波焊接微观结构演变及再结晶研究[J]. 材料导报, 2020, 34(10): 10157-10161.
XIAO Qiankun, ZHU Zhengqiang, LI Mingfeng. Research on Microstructure Evolution and Recrystallization of Ultrasonic Welding in Copper. Materials Reports, 2020, 34(10): 10157-10161.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040120  或          http://www.mater-rep.com/CN/Y2020/V34/I10/10157
1 Miura S, Honma H. Surface & Coatings Technology, 2003, 169(22),91.
2 Pawar R P, Gaikwad D D, Kauthale S S, et al. Mini-Reviews in Organic Chemistry, 2013, 10(3),232.
3 Guan W, Shen Y, Yan Y, et al. Journal of Materials Processing Techno-logy, 2017, 29,343.
4 Elangovan S, Prakasan K, Jaiganesh V. The International Journal of Advanced Manufacturing Technology, 2010, 51(1-4),163.
5 Esther T A, Kazeem O S, Edison M, et al. Materials Today,2017,4(2),166.
6 Li H, Cao B, Yang J W, et al. Journal of Materials Processing Technology, 2018, 256(12),121.
7 Nambu S, Seto K, Lin J Y, et al. Science & Technology of Welding & Joining, 2018, 23(8),1.
8 Vries B D. Mechanics and mechanisms of ultrasonic metal welding. Ph.D. Thesis, The Ohio State University, USA, 2004.
9 Macwan A, Chen D L. Materials & Design, 2015, 84,261.
10 Patel V K, Bhole S D, Chen D L. Scripta Materialia, 2011, 65(10),911.
11 Kelly G S, Just M S, Advani S G, et al. Journal of Materials Processing Technology, 2014, 214(8),1665.
12 Dehoff R R, Babu S S. Acta Materialia, 2010, 58(13),4305.
13 Shin H S, Leon M D. Journal of Materials Processing Technology, 2015, 224,222.
14 Ni Z L, Ye F X. Materials and Manufacturing Processes, 2016, 31(16),2091.
15 Fujii H T, Endo H, Sato Y S, et al. Materials Characterization, 2018, 139,233.
16 Sriraman M R, Babu S S, Short M. Scripta Materialia, 2010, 62(8),560.
17 Wynick G L, Boehlert, et al. Materials Characterization, 2015, 55(3),190.
18 Yang G, Sun L J, Zhang L N, et al. Journal of Iron and Steel Research, 2009, 21(2),39(in Chinese).
杨钢, 孙利军, 张丽娜, 等. 钢铁研究学报, 2009, 21(2),39.
19 Liang L D, Xu J Z, Wang F. Journal of Northeastern Institute of Techno-logy, 1981(2),19(in Chinese).
梁志德, 徐家桢, 王福. 东北大学学报:自然科学版, 1981(2),19.
20 Xie J, Zhu Y, Bian F, et al. Materials Characterization, 2017,132,145.
21 Hu G X, Cai X, Rong R H. Foundation of Material science, Shanghai Jiaotong University Press, China, 2010(in Chinese).
胡赓祥, 蔡珣, 戎咏华. 材料科学基础, 上海交通大学出版社, 2010.
[1] 韩丽青, 吴云胜, 刘状, 秦学智, 王常帅, 周兰章, 于宏, 陈亚军. 一种先进超超临界火电机组用Ni-Fe-Cr基高温合金的热变形行为[J]. 材料导报, 2020, 34(6): 6109-6113.
[2] 吕鹏, 陈亚楠, 关庆丰, 李姚君, 许亮, 丁佐军. 新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为[J]. 材料导报, 2020, 34(4): 4113-4117.
[3] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[4] 石晓辉, 曹祖涵, 张敏, 郭瑞鹏, 乔珺威. 基于位错密度分析的Ti-8Al-1Mo-1V钛合金片层组织在热轧及退火过程中的演变机制[J]. 材料导报, 2020, 34(12): 12101-12104.
[5] 黄勇, 冉小龙, 严晓娟. 压缩量对单晶铜冷压焊接接头组织及性能的影响[J]. 材料导报, 2020, 34(12): 12110-12114.
[6] 郝时嘉, 陆政, 李国爱, 于娟. 高性能铝锂合金关键力学性能各向异性的影响因素及控制措施[J]. 材料导报, 2019, 33(Z2): 389-393.
[7] 陈琛辉, 蒋璐瑶, 刘成龙, 黄伟九, 郭勇义, 胥桥梁. 搅拌摩擦加工细晶TA2工业纯钛晶粒长大规律[J]. 材料导报, 2019, 33(8): 1367-1370.
[8] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[9] 祝佳林, 邓超, 柳亚辉, 刘施峰, 张玉. 钽板退火过程中的储存能演变与再结晶行为[J]. 材料导报, 2019, 33(4): 654-659.
[10] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[11] 朱利敏, 李全安, 陈晓亚, 张清, 王颂博, 张帅. Mg-8Gd-0.5Zr合金热压缩过程中动态再结晶行为[J]. 材料导报, 2019, 33(24): 4117-4121.
[12] 周亮, 陈送义, 彭振凌, 张星临, 范淑敏, 昌江郁, 袁丁玲, 陈康华1,2,3. 微量Co对7056铝合金组织与腐蚀性能的影响[J]. 材料导报, 2019, 33(2): 314-320.
[13] 陈永城, 罗子艺, 张宇鹏, 易耀勇, 李明军. 紫铜/304不锈钢激光焊接接头显微组织及力学性能[J]. 材料导报, 2019, 33(2): 325-329.
[14] 郑国明, 李磊, 毛小南, 蔡建华, 吴聪, 雷磊. 钛合金BCC↔HCP相变的变体选择及其对晶体取向的影响[J]. 材料导报, 2019, 33(17): 2910-2917.
[15] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed