Please wait a minute...
材料导报  2020, Vol. 34 Issue (10): 10162-10165    https://doi.org/10.11896/cldb.19050063
  金属与金属基复合材料 |
厚板Cu-Cr-Zr合金搅拌摩擦焊接接头沿厚度方向组织和力学性能的变化
仇一卿1,2, 范祝男3, 黄春平3, 李宝华1,2, 唐众民1,2
1 先进焊接技术湖北省重点实验室,孝感 432100
2 湖北三江航天红阳机电有限公司,孝感 432100
3 南昌航空大学,轻合金加工科学与技术国防重点学科实验室,南昌 330063
Variations of the Microstructure and Mechanical Properties for the Thick Plate Cu-Cr-Zr Alloy Friction Stir Welding Joint Along the Thickness Direction
QIU Yiqing1,2, FAN Zhunan3, HUANG Chunping3, LI Baohua1,2, TANG Zhongmin1,2
1 Key Laboratory of Advanced Welding Technology, Xiaogan 432100, China
2 Hubei Sanjiang Aerospace Hongyang Electromechanical Co., Ltd, Xiaogan 432100, China
3 National Defense Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
下载:  全 文 ( PDF ) ( 4853KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本试验采用搅拌摩擦焊对板厚为15 mm的Cu-Cr-Zr合金进行了焊接,得到了外部成形良好、内部无缺陷的良好接头,并分析了其微观组织与力学性能沿焊缝厚度方向的变化规律。结果表明:焊核区微观组织均为细小等轴晶,在厚度方向上晶粒尺寸差异较小;而热机影响区晶粒在剪切力的作用下被明显拉长,且在厚度方向上晶粒尺寸差异较大,自顶部到底部逐渐减小。焊缝顶部和中部的硬度呈“W”形分布,底部呈“U”形分布;沿厚度方向,在焊核中心区硬度分布差异不大,但在前进侧热机影响区差异最大,差值达到45HV,焊缝硬度自顶部到底部逐渐增大;焊缝抗拉强度自顶部到底部逐渐增强,延伸率变化趋势相反,底部抗拉强度最大达303 MPa,为母材的80%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
仇一卿
范祝男
黄春平
李宝华
唐众民
关键词:  Cu-Cr-Zr合金  厚板搅拌摩擦焊  厚度方向  微观组织  力学性能    
Abstract: In this experiment, Cu-Cr-Zr alloy with a thickness of 15 mm was welded by friction stir welding (FSW). The joint with good external forming and no internal defects was obtained, and the difference of microstructures and mechanical properties of the weld were analyzed along the thickness direction. The results showed that: the microstructures of the NZ were the fine equiaxed grain, and the grain size varied little along the thickness direction. The microstructures of TMAZ were elongated by the shear force, the discrepancy of grain size along the thickness direction was larger, showed a trend of decreasing from top to bottom. The hardness distribution of the top and middle of the weld cross-section was ″W″ type, and the hardness distribution of the bottom was ″U″ type. The hardness of NZ has little difference in the thickness direction, and the diffe-rence in TMAZ of advancing side weld was the largest, which has reached 45HV, the hardness of the weld increased from top to bottom. The tensile strength of the weld increased gradually from top to bottom, while the elongation changed in the opposite direction, and the tensile strength at the bottom of the weld was up to 303 MPa, which was 80% of the base metal.
Key words:  Cu-Cr-Zr alloy    thick plate friction stir welding    the thickness direction    microstructure    mechanical property
                    发布日期:  2020-04-26
ZTFLH:  TG40  
基金资助: 湖北省焊接技术重点实验室开放基金 (hykj-2017-037)
通讯作者:  黄春平,副教授,硕士研究生导师。中国机械工程学会高级会员、中国焊接学会堆焊及表面工程专业委员会委员、中国焊接学会环境健康与安全专业委员会委员、江西省焊接学会理事兼副秘书长。为Journal of Alloys and CompoundsMaterials & Design、《复合材料学报》《材料导报》等杂志的审稿人。作为项目负责人承担了国家自然科学基金、航空科学基金、江西省自然科学基金、江西省教育厅科学基金和航空企业科技攻关项目等项目,发表了60余篇科技论文,其中SCI、EI检索30余篇。曾获江西省科技进步一等奖、二等奖和中航集团科学技术三等奖。cphuang@nchu.edu.cn   
作者简介:  仇一卿,工程师,硕士。主要从事搅拌摩擦焊工艺研究,发表论文3篇,授权发明专利4项。
引用本文:    
仇一卿, 范祝男, 黄春平, 李宝华, 唐众民. 厚板Cu-Cr-Zr合金搅拌摩擦焊接接头沿厚度方向组织和力学性能的变化[J]. 材料导报, 2020, 34(10): 10162-10165.
QIU Yiqing, FAN Zhunan, HUANG Chunping, LI Baohua, TANG Zhongmin. Variations of the Microstructure and Mechanical Properties for the Thick Plate Cu-Cr-Zr Alloy Friction Stir Welding Joint Along the Thickness Direction. Materials Reports, 2020, 34(10): 10162-10165.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050063  或          http://www.mater-rep.com/CN/Y2020/V34/I10/10162
1 Zhan G X, Li M M. Nonferrous Metals Science and Engineering, 2012, 3(1), 13(in Chinese).
占国星, 李明茂. 有色金属科学与工程, 2012, 3(1), 13.
2 Wang Q J, Wang J Y, Du Z Z, et al. Materials Reports A:Review Papers, 2012, 26(5), 106(in Chinese).
王庆娟, 王静怡, 杜忠泽, 等. 材料导报:综述篇, 2012, 26(5), 106.
3 Nandan R, DebRoy T, Bhadeshia H. Progress in Materials Science, 2008, 53(6),980.
4 Thomas W M, Nicholas E D. Materials and Design, 1997, 18(4),269.
5 Lee W B, Jung S B. Materials Letters, 2004, 58(6),1041.
6 Liu H J, Shen J J, Huang Y X, et al. Science & Technology of Welding & Joining, 2009, 14(6),577.
7 Xie G M, Ma Z Y, Geng L. Scripta Materialia, 2007, 57(2),73.
8 Gao H, Dong J H, Zhang K, et al. Transactions of the China Welding Institution, 2014(8),61(in Chinese).
高辉, 董继红, 张坤, 等. 焊接学报, 2014(8),61.
9 Gong W B, Tian H J, Liu W, et al. Rare Metal Materials and Enginee-ring, 2012(S2),854(in Chinese).
宫文彪, 田洪娇, 刘威,等. 稀有金属材料与工程, 2012(S2),854.
10 Zhou P Z, Li D H, He D Q, et al. Transactions of the China Welding Institution, 2007, 28(10),5(in Chinese).
周鹏展, 李东辉, 贺地求, 等. 焊接学报, 2007, 28(10),5.
11 He D Q, Lai R L, Xu S H, et al. Advanced Materials Research, 2013, 602-604(6),608.
12 Lai R, He D, He G, et al. Metals, 2017, 7(9), 381.
13 Ke L M, Pan J L, Xing L, et al. Transactions of the China Welding Institution, 2008, 29(7),39(in Chinese).
柯黎明, 潘际銮, 邢丽, 等. 焊接学报, 2008, 29(7),39.
14 Zhou P Z, Zhong J, He D Q. Journal of Materials Science and Enginee-ring, 2006, 24(3),429(in Chinese).
周鹏展, 钟掘, 贺地求. 材料科学与工程学报, 2006, 24(3),429.
15 Mao Y Q, Ke L M, Liu F C, et al. Acta Aeronautica et Astronautica Sinica, 2017, 38(3),256(in Chinese).
毛育青, 柯黎明, 刘奋成, 等. 航空学报, 2017, 38(3),256.
16 Heidarzadeh A, Saeid T. Materials & Design, 2013, 52,1077.
17 Abdollah-Zadeh A, Saeid T, Sazgari B. Journal of Alloys and Compounds, 2008, 460(1-2),535.
18 Saeid T, Abdollah-Zadeh A, Sazgari B. Journal of Alloys and Compounds, 2010, 490(1-2),652.
19 Xu W F, Liu J H, Luan G H, et al. Materials & Design, 2009, 30(6),1886.
20 Xie H, Song L P, Gong X, et al. Materials for Mechanical Engineering, 2011(10),92(in Chinese).
谢虎, 宋练鹏, 龚习, 等. 机械工程材料, 2011(10),92.
[1] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[2] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[3] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[4] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[5] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[6] 徐道芬, 陈康华, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8100-8105.
[7] 刘钊扬, 熊柏青, 张永安, 李志辉, 李锡武, 闫丽珍, 温凯. 汽车车身板用6A16铝合金拉深成形金属流动和微观组织相关性研究[J]. 材料导报, 2020, 34(8): 8119-8125.
[8] 张松, 杨静, 胥永刚, 张明月. 仿SIMA法钎焊对Mn-Cu合金与430不锈钢接头组织及性能的影响[J]. 材料导报, 2020, 34(8): 8126-8130.
[9] 刘轶伦. 高速铁路Cu-Cr-Zr合金承导线对连续挤压工艺的适应性[J]. 材料导报, 2020, 34(8): 8131-8135.
[10] 信思树, 王镇华, 李春玲, 王清. 体心立方BCC基多元合金中的共格析出及强化[J]. 材料导报, 2020, 34(7): 7130-7137.
[11] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[12] 童灯亮, 易幼平, 黄始全, 何海林, 郭万富, 王并乡. 变形温度对2A14铝合金组织与力学性能的影响[J]. 材料导报, 2020, 34(6): 6100-6104.
[13] 蔺宏涛, 孟强, 王怡嵩, 王家毅, 张韵, 江海涛. 旋转速度对高强度钢Q&P980搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2020, 34(6): 6126-6131.
[14] 陈国庆, 张戈, 尹乾兴, 张秉刚, 冯吉才. TiAl合金焊接裂纹控制研究进展[J]. 材料导报, 2020, 34(5): 5115-5119.
[15] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed