Please wait a minute...
材料导报  2020, Vol. 34 Issue (8): 8131-8135    https://doi.org/10.11896/cldb.19070081
  金属及金属基复合材料 |
高速铁路Cu-Cr-Zr合金承导线对连续挤压工艺的适应性
刘轶伦
东南大学土木工程学院,南京 211189
Adaptability Research on Cu-Cr-Zr Alloy for High Speed Railway Overhead Contact Lines During Continuous Extrusion Process
LIU Yilun
College of Civil Engineering, Southeast University, Nanjing 211189, China
下载:  全 文 ( PDF ) ( 5294KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究高速铁路承导线Cu-Cr-Zr合金对连续挤压工艺的适应性,采用TLJ500连续挤压机对满足高速铁路承导线用Cu-Cr-Zr合金元素含量要求的上引连铸杆坯进行了连续挤压加工,结合三维有限元数值模拟分析结果,分析了该Cu-Cr-Zr合金连续挤压杆的显微组织特征。基于Arrhenius双曲正弦函数和Cu-Cr-Zr合金的高温热模拟变形试验结果构建了高速铁路承导线用Cu-Cr-Zr合金的本构方程,并以此为基础利用UG、Deform 3D等软件平台建立了该合金在同等现实连续挤压工艺条件下的有限元分析模型,模拟了该合金在加工过程中所形成的温度场、应变场等物理场的分布状态。通过观察分析Cu-Cr-Zr合金挤压杆微观组织形貌和第二析出相的分布状态,认为Cu-Cr-Zr合金经连续挤压工艺加工后,其显微组织结构得到了显著的改善,增强了细晶强化作用和第二相粒子的析出强化作用,过饱和固溶体分解析出的第二相粒子不仅阻碍了亚晶晶界向大角度晶界转变的趋势,而且还有利于抑制合金在连续挤压过程中再结晶晶粒的长大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘轶伦
关键词:  高速铁路  承导线  Cu-Cr-Zr合金  连续挤压  数值模拟    
Abstract: In order to study the adaptability of continuous extrusion process for Cu-Cr-Zr alloy which was satisfied the content requirements of high-speed railway overhead contact lines, this alloy was processed with the TLJ500 continuous extrusion machine, and the microstructure of Cu-Cr-Zr alloy continuous extrusion rod was analyzed combine with the results of three-dimensional finite element numerical simulation. The constitutive equation of Cu-Cr-Zr alloy used for high-speed railway overhead contact lines was established on Arrhhenius hyperbolic sinusoidal function with the experimental results of high temperature thermal deformation simulation of this alloy. And the three-dimensional finite element analysis model of the Cu-Cr-Zr alloy was built up though the software platforms of UG and Deform 3D, the temperature field distribution and strain field distribution of its processing processes were simulated as well. The distributions of the second phase and microstructure of the Cu-Cr-Zr alloy extrusion rod were observed by, it was considered that the microstructure was obviously improved though continuous extrusion process combined with simulation results of physical field such as temperature field, strain field from the point of structure analysis views. Not only the fine-grained strengthening effects were enhanced and the second phase particles precipitation strengthening effects were improved, but also the growth of recrystallized grain was restrained during the Cu-Cr-Zr alloy continuous extrusion processing processes.
Key words:  high speed railway    overhead contact lines    Cu-Cr-Zr alloy    continuous extrusion    numerical simulation
                    发布日期:  2020-04-25
ZTFLH:  TG146.1  
基金资助: 中国铁路总公司科技研究开发计划课题(2016J006-B)
通讯作者:  liuyl_ky@163.com   
作者简介:  刘轶伦,1994年6月毕业于东南大学,获得工学学士学位。2014年6月毕业于南京大学,获得EMBA硕士学位。于2018年9月至今,东南大学土木学院工程博士在读,主要从事工程新材料的开发与应用研究。
引用本文:    
刘轶伦. 高速铁路Cu-Cr-Zr合金承导线对连续挤压工艺的适应性[J]. 材料导报, 2020, 34(8): 8131-8135.
LIU Yilun. Adaptability Research on Cu-Cr-Zr Alloy for High Speed Railway Overhead Contact Lines During Continuous Extrusion Process. Materials Reports, 2020, 34(8): 8131-8135.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070081  或          http://www.mater-rep.com/CN/Y2020/V34/I8/8131
1 TB/T 2809-2017, Copper and copper alloy contact wires for electrified railway, 2017(in Chinese).
TB/T 2809-2017, 电气化铁路用铜及铜合金接触线,2017.
2 TB/T 3111-2017, Copper and copper alloy stranded conductors for electric railway, 2017(in Chinese).
TB/T 3111-2017, 电气化铁路用铜及铜合金绞线,2017.
3 Liu Q, Zhang X, Ge Y, et al. Metallurgical and Materials Transactions A, 2006, 37(11), 3233.
4 Yuan Y, Li Z, Xiao Z, et al. Journal of Alloys and Compounds, 2017, 703, 454.
5 Hu H Q, Xu C, Yang L J, et al. Materials Reports A: Review Papers, 2018, 32(2), 453(in Chinese).
胡号旗, 许赪, 杨丽景, 等. 材料导报: 综述篇, 2018, 32(3), 453.
6 Feng H, Jiang H, Yan D, et al. Materials Science and Engineering: A, 2013, 582, 219.
7 Batra I S, Dey G K, Kulkarni U D, et al. Journal of Nuclear Materials, 2001, 299(2), 91.
8 Correia J B, Davies H A, Sellars C M. Acta Materialia, 1997, 45(1), 177.
9 Yuan Y. Transactions of Materials and Heat Treatment, 2018, 39(2), 18(in Chinese).
袁远.材料热处理学报, 2018, 39(2), 18.
10 Greek D. Journal of the Institute of Metals, 1972, 100(8), 296.
11 Ethering C. New Development in Wire Technology, 1977, 44(518), 85.
12 He Y, Li X B, Yuan Y. Materials Reports, 2017, 31(S1),139(in Chinese).
何宇, 李学斌, 袁远. 材料导报, 2017, 31(专辑29), 139.
13 Wang J, Yun X B, Li B, et al. Nonferrous Metals: Extractive Metallurgy, 2011(5), 38(in Chinese).
王军, 运新兵, 李冰, 等.有色金属: 冶炼部分, 2011(5), 38.
14 Guo T B. The study on microstructure evolution, texture characteristic and mechanical property based on equal channel angle pressing. Doctor’s Thesis, Lanzhou University of Technology, China, 2010(in Chinese).
郭廷彪. ECAP制备超细晶铜的组织演变, 织构特征及力学性能研究. 博士学位论文, 兰州理工大学, 2010.
15 Xia C, Zhang W, Kang Z, et al. Materials Science and Engineering: A, 2012, 538, 295.
16 Huh S H, Kim H K, Park J W, et al. Physical Review B, 2000, 62(4), 2937.
17 Holzwarth U, Stamm H. Journal of Nuclear Materials, 2000, 279(1), 31.
18 Dobatkin S V, Gubicza J, Ge Y, et al. Materials Letters, 2015, 153, 5.
19 Xie C S, Zhai Q M, Xu W Q, et al. Heat Treatment of Metals, 2007, 32(1), 12(in Chinese).
谢春生, 翟启明, 徐文清, 等. 金属热处理, 2007, 32(1), 12.
20 Zhao X C. Research on nonhomogeneous dislocation nucleation and inte-raction between dislocation and grain boundary. Doctor’s Thesis, Tsinghua University, China, 2011(in Chinese).
赵雪川. 位错非均匀形核及与晶界作用研究. 博士学位论文, 清华大学, 2011.
21 Yao S, Liu P, Liu X K, et al. Shanghai Nonferrous Metals, 2013(1), 15(in Chinese).
姚松, 刘平, 刘新宽, 等. 上海有色金属, 2013(1), 15.
[1] 徐国财, 黎军顽, 左鹏鹏, 吴晓春. 热-机械载荷下H13钢力学响应行为实验和数值分析[J]. 材料导报, 2020, 34(8): 8159-8164.
[2] 周蕊, 刘众旺, 张建国, 刘兵飞, 杜春志. 基于DPC-CZM混合模型的金属粉末压坯裂纹三维数值模拟[J]. 材料导报, 2020, 34(6): 6151-6155.
[3] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[4] 余为, 张雄博. 考虑界面的空心玻璃微珠/环氧树脂复合泡沫材料的力学性能仿真分析[J]. 材料导报, 2020, 34(16): 16161-16166.
[5] 权国政, 施瑞菊, 刘乔, 赵江, 周杰, 王月乔. 电弧熔丝单层单道积材残余应力模拟分析及锤击消除研究[J]. 材料导报, 2020, 34(14): 14154-14160.
[6] 郑晨, 白晓宇, 张明义, 王海刚. 玻璃纤维增强聚合物锚杆在地下结构抗浮工程中的研究进展[J]. 材料导报, 2020, 34(13): 13194-13020.
[7] 仇一卿, 范祝男, 黄春平, 李宝华, 唐众民. 厚板Cu-Cr-Zr合金搅拌摩擦焊接接头沿厚度方向组织和力学性能的变化[J]. 材料导报, 2020, 34(10): 10162-10165.
[8] 余雷, 王辉, 单兵, 姚炜峰, 唐姝文, 张俊, 陈业高. 低雾化气压对喷射成形雾化过程的影响[J]. 材料导报, 2019, 33(Z2): 463-467.
[9] 刘伟东, 薄旭盛, 何成. 基于轻量化材料防撞梁的低速碰撞性能研究[J]. 材料导报, 2019, 33(Z2): 468-472.
[10] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[11] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[12] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[13] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[14] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[15] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed