Please wait a minute...
材料导报  2020, Vol. 34 Issue (13): 13194-13020    https://doi.org/10.11896/cldb.19050238
  高分子与聚合物基复合材料 |
玻璃纤维增强聚合物锚杆在地下结构抗浮工程中的研究进展
郑晨1, 白晓宇1,2, 张明义1,2, 王海刚1
1 青岛理工大学土木工程学院,青岛 266033
2 山东省高等学校蓝色经济区工程建设与安全协同创新中心,青岛 266033
Research Progress on Glass Fiber Reinforced Polymer Anchors in Anti-floating Engineering of Underground Structures
ZHENG Chen1, BAI Xiaoyu1,2, ZHANG Mingyi1,2, WANG Haigang1
1 College of Civil Engineering, Qingdao University of Technology, Qingdao, Shandong 266033, China
2 Cooperative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone, Qingdao, Shandong 266033, China
下载:  全 文 ( PDF ) ( 3768KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着地下空间的不断开发利用,地下结构的埋深越来越大,对岩土体进行锚固已成为工程中至关重要的一环。由于全球环境污染造成极端气候频发,许多城市经常出现地下水位暴涨,从而产生较大的浮力,威胁到建筑结构整体的稳定性。抗浮锚杆因具有施工便捷、成本低、工期短、分散应力、抗浮效果好等优势,成为目前广泛推广的抗浮措施。钢筋锚杆即使采取涂覆防锈层或在注浆中掺加防腐剂等防锈措施,在复杂的地下环境中也极易发生锈蚀,无法作为永久性锚固结构使用,严重影响建筑物的使用寿命,因此选用耐久性较好的锚杆是现阶段抗浮工程中的研究热点。
玻璃纤维增强聚合物(Glass fiber reinforced polymer,GFRP)抗浮锚杆与传统钢筋抗浮锚杆相比具有更高的抗拉强度、优异的耐腐蚀性能及良好的绝缘性能,与芳纶纤维增强聚合物(AFRP)锚杆、碳纤维增强聚合物(CFRP)、玄武岩纤维增强聚合物(BFRP)锚杆相比价格更低、性价比更高,近年来在地下结构抗浮工程中备受推崇和青睐。虽然GFRP材料用作锚杆的年限较短,且GFRP锚杆用于地下结构抗浮工程中的相关试验研究较少,未有较为完善的锚固系统应力传递机制及有关GFRP材料与混凝土间黏结性能的研究,有关部门未制定适用于GFRP材料的抗浮锚杆技术规程,但其取代钢筋锚杆用于岩土工程中的研究趋势逐年增长。
本文简要介绍了GFRP抗浮锚杆的主要组成部分及工作原理,并对GFRP锚杆在地下结构工程中的抗浮设计相关的试验研究以及在试验基础上进行数值模拟分析的研究现状进行介绍,分析讨论GFRP锚杆在抗浮工程应用中存在的不足,并对GFRP锚杆在抗浮工程领域的未来发展提出建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑晨
白晓宇
张明义
王海刚
关键词:  GFRP锚杆  抗浮锚杆  纤维增强材料  地下工程  锚固特性  数值模拟    
Abstract: With the continuous development and utilization of underground space, the buried depth of underground structures is getting larger and larger, and anchoring rock and soil has become a vital part of the project. Due to the frequent occurrence of extreme climate caused by global environmental pollution, many cities often experience a phenomenon of groundwater level surge, which causes greater buoyancy and threatens the overall stability of the building structure.The anti-floating anchor has become a widely popular anti-floating measure because of its advantages such as convenient construction, low cost, short construction period, distributed stress, and good anti-floating effect.Even if the steel anchor is coated with anti-rust layer or anti-corrosion agent such as preservative in the grouting, it is easy to rust in the complex underground environment and cannot be used as a permanent anchor, which has an important impact on the service life of the building. Nowadays, the use of more durable anchors for anti-floating engineering is a hot spot in the industry.
Glass fiber reinforced polymer (GFRP) anti-floating anchor has higher tensile strength, superior corrosion resistance and insulation than traditional steel anchors. GFRP anchor is less expensive and cost-effective than AFRP (aramid fiber reinforced polymer) anchor, CFRP (carbon fiber reinforced polymer) anchor, and BFRP (basalt fiber reinforced polymer) anchor. In recent years, it has been highly praised and favored in underground structure anti-floating engineering. Due to the short length of the GFRP material used as the anchor rod, the GFRP anchor rod is seldom used in the anti-floating engineering of underground structures.There is no complete stress transmission mechanism of the anchoring system and research on the bonding performance between the GFRP material and the concrete. The relevant departments have not formulated a technical specification for anti-floating anchor rods suitable for GFRP.But many projects have attempted to use GFRP anchors for anti-floating in underground structures, the trend of replacing steel anchors for geotechnical engineering is also increasing year by year.
This review briefly introduces the main components and working principle of GFRP anti-floating anchor, and introduces the experimental research on the anti-floating design of GFRP anchor in underground structure engineering and the research status of numerical simulation analysis based on the test. In addition, this review analyzes and discusses the shortcomings of GFRP anchors in the research and application of anti-floa-ting engineering, and puts forward suggestions for the future development of GFRP anchors in the field of anti-floating engineering.
Key words:  GFRP anchor    anti-floating anchor    fiber reinforced material    underground engineering    anchoring characteristics    numerical simulation
                    发布日期:  2020-06-24
ZTFLH:  TU473  
基金资助: 国家自然科学基金(51708316;51778312;51809146);中国博士后科学基金面上项目(2018M632641);山东省重点研发计划(2017GSF16107;2018GSF117008);山东省自然科学基金(ZR2016EEQ08;ZR2017PEE006);山东省高等学校科技计划(J16LG02)
通讯作者:  baixiaoyu538@163.com   
作者简介:  郑晨,2017年毕业于青岛理工大学,获得工学学士学位。现为青岛理工大学硕士研究生,在张明义教授、白晓宇副教授的指导下进行研究。目前主要研究领域为FRP材料在岩土工程中的应用。
;白晓宇,男,1984年生于内蒙古呼和浩特,博士(后),副教授,硕士研究生导师。2015年6月,在青岛理工大学获土木工程专业博士学位,博士毕业后留校任教。担任国家自然科学基金项目评议人、《工程勘察》编委、《岩土工程学报》《岩土力学》等多个期刊审稿人。近5年,主持国家自然科学基金、山东省重点研发计划、中国博士后科学基金等纵向科研课题7项。以第一作者和通讯作者在国内外核心期刊发表学术论文43篇,其中SCI检索3篇,EI检索21篇;授权国家发明专利24项。获青岛市科技进步三等奖1项(2017年,第一完成人),青岛市科技进步二等奖1项(2015年,第三完成人)、山东省高等学校科学技术二等奖2项(2017年,第二完成人、第四完成人)、中国商业联合会科学技术一等奖1项(2018年,第四完成人)。目前主要研究方向有:(1)FRP材料在岩土工程中的应用;(2)地基基础工程;(3)岩土锚固。
引用本文:    
郑晨, 白晓宇, 张明义, 王海刚. 玻璃纤维增强聚合物锚杆在地下结构抗浮工程中的研究进展[J]. 材料导报, 2020, 34(13): 13194-13020.
ZHENG Chen, BAI Xiaoyu, ZHANG Mingyi, WANG Haigang. Research Progress on Glass Fiber Reinforced Polymer Anchors in Anti-floating Engineering of Underground Structures. Materials Reports, 2020, 34(13): 13194-13020.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050238  或          http://www.mater-rep.com/CN/Y2020/V34/I13/13194
1 Bai X Y. Experimental study and theoretical analysis on the anchoring mechanism for GFRP anti-floating anchor. Ph.D. Thesis, Qingdao Technology of University, China, 2015(in Chinese).
白晓宇. GFRP 抗浮锚杆锚固机理试验研究与理论分析. 博士学位论文, 青岛理工大学, 2015.
2 Li F, Zhao Q L, Chen H S, et al. Composite Interfaces, 2011, 18(2), 91.
3 Zheng C, Bai X Y, Zhang M Y, et al. Fiberglass/Composite, 2019(4), 90(in Chinese).
郑晨, 白晓宇, 张明义, 等. 玻璃钢/复合材料, 2019(4), 90.
4 Bai X Y, Zhang M Y, Liu H, et al. Rock and Soil Mechanics, 2014, 35(9), 2464(in Chinese).
白晓宇, 张明义, 刘鹤, 等. 岩土力学, 2014, 35(9), 2464.
5 Jia J Q, Song E X. Chinese Jounal of Geotechnical Engineering, 2002, 24(6), 769(in Chinese).
贾金青, 宋二祥. 岩土工程学报, 2002, 24(6), 769.
6 Zhang L W, Wang R. Rock and Soil Mechanics, 2002, 23(5), 627(in Chinese).
张乐文, 汪稔. 岩土力学, 2002, 23(5), 627.
7 Ahmed E A, El-Salakawy E F, Benmokrane B. Journal of Composites for Construction, 2008, 12(6), 596.
8 Zeng X M, Lei Z L, Zhang W J. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(1), 143(in Chinese).
曾宪明, 雷志梁, 张文巾. 岩石力学与工程学报, 2002, 21(1), 143.
9 Bai X Y, Zhang M Y, Kuang Z, et al. Journal of Guangxi University(Natural Science Edition), 2018, 43(4), 1466(in Chinese).
白晓宇, 张明义, 匡政, 等. 广西大学学报(自然科学版), 2018, 43(4), 1466.
10 Kuang Z, Bai X Y, Zhang M Y, et al. Journal of Guangxi University(Natural Science Edition), 2018, 43(4), 1588(in Chinese).
匡政, 白晓宇, 张明义, 等. 广西大学学报(自然科学版), 2018, 43(4), 1588.
11 Alves J, El-Ragaby A, El-Salakawy E. Journal of Composites for Construction, 2010, 15(3), 249.
12 Zeng G J. Carrying capacity mechanism analysis of anti-float anchor in the soil. Master’s Thesis, Chongqing University, China, 2004(in Chinese).
曾国机. 土层抗浮锚杆受力机理研究分析. 硕士学位论文, 重庆大学, 2004.
13 Chu W, Karbhari V M. Journal of Materials in Civil Engineering, 2005, 17(1), 63.
14 Wang Y, Feng J, Li J Y, et al. Journal of Engineering Geology, 2018, 26(3), 776(in Chinese).
王洋, 冯君, 李珈瑶, 等. 工程地质学报, 2018, 26(3), 776.
15 Hao Q D, Wang B, Ou J P. Concrete,2006(9), 38(in Chinese).
郝庆多, 王勃, 欧进萍. 混凝土, 2006(9), 38.
16 Marc Fette, Nicole Stöß, Martin Hentschel. Lightweight Design Worldwide, 2017, 10(3), 34.
17 Kuang Z. Research for the load-transfer mechanism and anchorage properties of the glass fiber reinforced plastic anti-floating anchor. Master’s Thesis, Qingdao Technological University, China, 2018(in Chinese).
匡政. 玻璃纤维增强聚合物抗浮锚杆荷载传递机理及锚固特性研究. 硕士学位论文, 青岛理工大学, 2018.
18 Li G W, Zheng C, Chen S G, et al. Journal of Hydraulic Engineering, 2017, 48(7), 825(in Chinese).
李国维, 郑诚, 陈圣刚, 等. 水利学报, 2017, 48(7), 825.
19 Bai X Y, Zhang M Y, Kou H L. Engineering Mechanics, 2015, 32(8), 172(in Chinese).
白晓宇, 张明义, 寇海磊. 工程力学, 2015, 32(8), 172.
20 Bai X Y, Zhang M Y, Zhang S Q. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4), 804(in Chinese).
白晓宇, 张明义, 张舜泉. 岩石力学与工程学报, 2015, 34(4), 804.
21 Hao Q D, Wang Y, He Z. Construction and Building Materials, 2009, 23(2), 865.
22 Yan F, Lin Z. Composite Structures, 2017, 11(55), 393.
23 Yuan Y, Jia X, Yan F Y. Journal of Highway and Transportation Research and Development, 2004, 21(9), 13(in Chinese).
袁勇, 贾新, 闫富有. 公路交通科技, 2004, 21(9), 13.
24 Bai X Y, Zhang M Y, Li W W, et al. Journal of Central South University (Science and Technology), 2015,46(10), 3841(in Chinese).
白晓宇, 张明义, 李伟伟, 等. 中南大学学报(自然科学版), 2015,46(10), 3841.
25 Zeng X M, Li D L, Li S M, et al. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S2), 3609(in Chinese).
曾宪明, 林大路, 李世民, 等. 岩石力学与工程学报, 2009, 28(增刊2), 3609.
26 Kumar J, Sahoo J P. International Journal of Geomechanics, 2011, 12(3), 333.
27 Xiao T Q, Li H M, Li H Y, et al. Journal of Mining & Safety Enginee-ring, 2017, 34(6), 1075(in Chinese).
肖同强, 李化敏, 李海洋,等. 采矿与安全工程学报, 2017, 34(6), 1075.
28 Bai X Y, Zhang M Y, Liu H. Industrial Construction, 2014, 44(2), 94(in Chinese).
白晓宇, 张明义, 刘鹤. 工业建筑, 2014, 44(2), 94.
29 Zhang M Y, Kou H L, Bai X Y, et al. Rock and Soil Mechanics, 2014, 35(4), 1069(in Chinese).
张明义, 寇海磊, 白晓宇, 等. 岩土力学, 2014, 35(4), 1069.
30 Bai X Y, Zhang M Y, Zhu L, et al. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6), 1407(in Chinese).
白晓宇, 张明义, 朱磊, 等. 岩石力学与工程学报, 2018, 37(6), 1407.
31 Robert M, Benmokrane B. Journal of Composites for Construction, 2010, 14(4), 368.
32 You Z J, Fu H L, You C A, et al. Rock and Soil Mechanics, 2018, 39(1), 85(in Chinese).
尤志嘉, 付厚利, 尤春安, 等. 岩土力学, 2018, 39(1), 85.
33 Li J W, Qiao J G, Fu X, et al. Fiberglass/Composite, 2019(1), 99(in Chinese).
李景文,乔建刚, 付旭, 等. 玻璃钢/复合材料, 2019(1), 99.
34 Li W W, Zhang M Y, Bai X Y, et al. Chinese Journal of Underground Space and Engineering, 2015, 11(1), 108(in Chinese).
李伟伟, 张明义, 白晓宇, 等. 地下空间与工程学报, 2015, 11(1), 108.
35 Kou H, Guo W, Zhang M. Tunnelling and Underground Space Technology, 2015, 49, 408.
36 Zhang B, Benmokrane B, Chennouf A, et al. Journal of Composites for Construction, 2001, 5(2), 85.
37 Jiang T Y. Experimental and theoretical investigation on the anchorage system for CFRP tendons. Ph.D. Thesis, Hunan University, China, 2008(in Chinese).
蒋田勇. 碳纤维预应力筋及拉索锚固系统的试验研究和理论分析. 博士学位论文, 湖南大学, 2008.
38 You C A. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(3), 339(in Chinese).
尤春安. 岩石力学与工程学报, 2000, 19(3), 339.
39 Bai X Y, Zhang M Y, Yan N. China Civil Engineering Journal, 2015, 48(8), 38(in Chinese).
白晓宇, 张明义, 闫楠. 土木工程学报, 2015, 48(8), 38.
40 Bai X Y, Zhang M Y, Kuang Z, et al. Rock and Soil Mechanics, 2018, 39(10), 3891(in Chinese).
白晓宇, 张明义, 匡政, 等. 岩土力学, 2018, 39(10), 3891.
41 Ashrafi H, Bazli M, Vatani Oskouei A, et al. Journal of Composites for Construction, 2017, 22(1), 04017047.
42 Huang Q Q, Zhou J. Soil Engineering and Foundation, 2008, 22(3),1(in Chinese).
黄琪祺, 周健. 土工基础, 2008, 22(3), 1.
43 Guo W D, Randolph M F. Computers and Geotechnics, 1998, 23(1), 85.
44 Fu W G, Liu J G, Yang Z Y. Chinese Jounal of Geotechnical Enginee-ring, 2014, 36(11), 1971(in Chinese).
付文光, 柳建国, 杨志银. 岩土工程学报, 2014, 36(11), 1971.
45 Hyett A J, Bawden W F, Macsporran G R, et al. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1995, 32(1), 11.
46 Kuang Z, Bai X Y, Zhang M Y, et al. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6), 1158(in Chinese).
匡政, 白晓宇, 张明义, 等.岩石力学与工程学报, 2019, 38(6), 1158.
47 Liu T C. Test study on anchor head of GFRP anchor and application of GFRP anchor in slope support. Master’s Thesis, Shandong University of Science and Technology, China, 2017(in Chinese).
刘通昌. GFRP锚杆锚头试验研究及其边坡应用. 硕士学位论文, 山东科技大学, 2017.
48 Liu W X, Tian C Y, Wang X L. Journal of Transport Science and Engineering, 2016, 32(4), 69(in Chinese).
刘文娴, 田承宇, 王雪莲. 交通科学与工程, 2016, 32(4), 69.
49 Hu J X. The research and analysis on anchor performance of GFRP bolts. Master’s Thesis, Central South University, China, 2012(in Chinese).
胡金星. GFRP锚杆锚固性能研究与分析. 硕士学位论文, 中南大学, 2012.
50 Yang S L, Xu W Y, Liu Z D. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(1), 61(in Chinese).
杨松林, 徐卫亚, 刘祖德. 岩石力学与工程学报, 2003, 22(1),61.
51 Huang Z H, Li G W. Fiberglass/Composite, 2008(4), 36(in Chinese).
黄志怀, 李国维. 玻璃钢/复合材料, 2008(4), 36.
52 Cosenza E, Manfredi G, Realfonzo R. Journal of Composites for Construction, 1997, 1(2), 40.
53 Soong W H, Raghavan J, Rizkalla S H. Construction and Building Materials, 2011, 25(6), 2813.
54 Bai X Y, Zhang M Y, Wang Y H, et al. Journal of Civil, Architectural & Environmental Engineering, 2018, 40(5), 78(in Chinese).
白晓宇, 张明义, 王永洪, 等. 土木建筑与环境工程, 2018, 40(5), 78.
55 Jia X, Yuan Y, Li C F. Chinese Journal of Rock Mechanics and Enginee-ring, 2006, 25(10), 2108(in Chinese).
贾新, 袁勇, 李焯芬. 岩石力学与工程学报, 2006, 25(10), 2108.
56 Carvelli V, Fava G, Pisani M A, et al. Journal of Composites for Construction, 2009, 13(5), 344.
57 Zhang M Y, Bai X Y, Li W W. Journal of Central South University (Science and Technology), 2016, 47(1), 239(in Chinese).
张明义, 白晓宇, 李伟伟. 中南大学学报(自然科学版), 2016, 47(1), 239.
58 Zhu L, Zhang M Y, Bai X Y, et al. Journal of Civil, Architectural & Environmental Engineering, 2017, 39(2), 107(in Chinese).
朱磊, 张明义, 白晓宇, 等. 土木建筑与环境工程, 2017, 39(2), 107.
59 Yeung A T, Cheng Y M, Tham L G, et al. Journal of Performance of Constructed Facilities, 2007, 21(1), 26.
60 Luo X Y, Tang X X, Kuang Y C, et al. Journal of Railway Science and Engineering, 2015(3), 521(in Chinese).
罗小勇, 唐谢兴, 匡亚川,等. 铁道科学与工程学报, 2015(3), 521.
61 Vilanova I, Baena M, Torres L, et al. Composites Part B, Engineering, 2015, 74, 42.
62 Zhu L, Zhang M Y, Bai X Y. Industrial Construction, 2016, 46(12), 78(in Chinese).
朱磊, 张明义, 白晓宇. 工业建筑, 2016, 46(12), 78.
63 Chen G Q. Geotechnical Investigation & Surveying, 1997, 25(2), 15(in Chinese).
陈根全. 工程勘察, 1997, 25(2), 15.
64 Okelo R, Yuan R L. Journal of Composites for Construction, 2005, 9(3), 203.
65 Kuang Y C, Xu Y, Ou L W. Journal of Harbin Engineering University, 2016, 37(12), 1658(in Chinese).
匡亚川, 徐杨, 欧练文. 哈尔滨工程大学学报, 2016, 37(12), 1658.
66 Li M, Zhang Q B, Ye Z W, et al. Zhongwai Highway, 2018, 38(2), 177(in Chinese).
李明, 张庆彬, 叶智威, 等. 中外公路, 2018, 38(2),177.
67 Wang J, Cao P, Lin H. Journal of China University of Mining & Techno-logy, 2018, 47(2), 289(in Chinese).
王军, 曹平, 林杭. 中国矿业大学学报, 2018, 47(2), 289.
68 Maranan G B, Manalo A C, Karunasena W, et al. Composite Structures, 2015, 132,1113.
69 Nanni A, Rizkalla S, Bakis C E, et al. In:Proceedings of the International Composites Exhibition. Nashville, 1998, pp.11.
70 Kuang Z, Bai X Y, Zhang M Y, et al. Journal of Composite Materials, 2019, 36(5), 1063(in Chinese).
匡政, 白晓宇, 张明义, 等. 复合材料学报,2019, 36(5), 1063.
71 Li G W, Wang J Q, Zheng C, Water Resources and Hydropower Enginee-ring, 2019, 50(3), 155(in Chinese).
李国维, 汪井秋, 郑诚, 等. 水利水电技术, 2019, 50(3), 155.
72 Li G W, Gao L, Huang Z L, et al. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8), 1653(in Chinese).
李国维, 高磊, 黄志怀, 等. 岩石力学与工程学报, 2007, 26(8), 1653.
73 Zhang G Q. The anchoring mechanism and the numerical analysis of the fiber reinforced polymer tendon. Master’s Thesis, Zhengzhou University, China, 2004(in Chinese).
张钢琴. 纤维聚合物锚杆的锚固机理及数值分析. 硕士学位论文, 郑州大学, 2004.
74 Zhang H X, Zhu F S, Wang F C. Journal of Shenyang Jianzhu University(Natural Science), 2007, 23(2), 231(in Chinese).
张海霞, 朱浮声, 王凤池. 沈阳建筑大学学报(自然科学版), 2007, 23(2), 231.
75 Al-Mayah A, Soudki K, Plumtree A. Journal of Composites for Construction, 2007, 11(5), 469.
76 Li W W. Test study and finite element simulation of extenal anchorage on GFRP anti-floating anchor. Master’s Thesis, Qingdao Technological University, China, 2013(in Chinese).
李伟伟. GFRP 抗浮锚杆外锚固试验研究及有限元模拟. 硕士学位论文, 青岛理工大学, 2013.
77 Fava G, Carvelli V, Pisani M A. Composites Part B: Engineering, 2016, 93, 210.
78 Zhang K, Yang Q, Jiang J C, et al. Journal of Dalian University of Technology, 2013, 53(5), 710(in Chinese).
张凯, 杨庆, 蒋景彩, 等. 大连理工大学学报, 2013, 53(5), 710.
79 Fei K, Zhang J W. Application of ABAQUS in geotechnical engineering, China Water & Power Press, China,2010(in Chinese).
费康, 张建伟. ABAQUS在岩土工程中的应用, 中国水利水电出版社, 2010.
80 Mesbah H A, Benzaid R, Benmokrane B. International Journal of Civil Engineering and Construction Science, 2017, 4(3), 21.
81 Gooranorimi O, Suaris W, Nanni A. Engineering Structures, 2017, 146, 34.
82 Zhang M Y, Bai X Y, Kuang Z, et al. Journal of Guangxi University(Natural Science Edition), 2018, 43(5), 1878(in Chinese).
张明义, 白晓宇, 匡政, 等. 广西大学学报(自然科学版), 2018, 43(5), 1878.
83 Kuang Z, Bai X Y, Zhang M Y, et al. Geotechnical Investigation & Surveying, 2018, 46(8), 1(in Chinese).
匡政, 白晓宇, 张明义, 等. 工程勘察, 2018, 46(8), 1.
[1] 刘轶伦. 高速铁路Cu-Cr-Zr合金承导线对连续挤压工艺的适应性[J]. 材料导报, 2020, 34(8): 8131-8135.
[2] 徐国财, 黎军顽, 左鹏鹏, 吴晓春. 热-机械载荷下H13钢力学响应行为实验和数值分析[J]. 材料导报, 2020, 34(8): 8159-8164.
[3] 周蕊, 刘众旺, 张建国, 刘兵飞, 杜春志. 基于DPC-CZM混合模型的金属粉末压坯裂纹三维数值模拟[J]. 材料导报, 2020, 34(6): 6151-6155.
[4] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[5] 余雷, 王辉, 单兵, 姚炜峰, 唐姝文, 张俊, 陈业高. 低雾化气压对喷射成形雾化过程的影响[J]. 材料导报, 2019, 33(Z2): 463-467.
[6] 刘伟东, 薄旭盛, 何成. 基于轻量化材料防撞梁的低速碰撞性能研究[J]. 材料导报, 2019, 33(Z2): 468-472.
[7] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[8] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[9] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[10] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[11] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[12] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[13] 浦娟, 谢依汝, 胡庆贤, 胥国祥, 朱蔡琛. 单缆式焊丝GMAW电弧物理行为的数值模拟[J]. 材料导报, 2019, 33(4): 689-693.
[14] 丁述宇, 马国政, 陈书赢, 何鹏飞, 王译文, 王海斗, 徐滨士. 热喷涂成形过程热量累积行为与温度控制研究现状[J]. 材料导报, 2019, 33(21): 3644-3653.
[15] 贾森森, 王永彪, 肖艳秋, 吴玉娟, 彭立明, 刘建秀, 刘新田. 镁合金微观组织的相场法模拟进展[J]. 材料导报, 2019, 33(19): 3306-3312.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed