Please wait a minute...
材料导报  2019, Vol. 33 Issue (21): 3644-3653    https://doi.org/10.11896/cldb.18110093
  金属与金属基复合材料 |
热喷涂成形过程热量累积行为与温度控制研究现状
丁述宇1, 马国政1, 陈书赢1,2, 何鹏飞1, 王译文1, 王海斗1, 徐滨士1
1 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
2 中国航天科研训练中心人因工程重点实验室,北京 100094
Research State on Heat Accumulation Behavior and TemperatureControl in Thermal Spraying Forming Process
DING Shuyu1, MA Guozheng1, CHEN Shuying1,2, HE Pengfei1, WANG Yiwen1, WANG Haidou1, XU Binshi1
1 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072
2 National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094
下载:  全 文 ( PDF ) ( 19500KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热喷涂技术作为零部件表面强化的重要技术,在提升零部件耐磨、耐腐蚀、耐高温等综合性能,延长零部件的使用寿命等方面发挥着重要作用。但热喷涂成形过程中焰流温度高、能量密度集中易使涂层/基体体系累积大量热量,进而导致涂层出现热裂纹甚至开裂、剥落等现象,降低涂层的服役可靠性和缩短涂层的工作寿命。
    针对热量累积造成涂层质量下降的问题,目前研究焦点为探究热喷涂成形过程热量累积行为并对涂层/基体体系进行温度场监控,以掌握体系温度场动态变化过程。根据体系热量累积规律,调节喷涂工艺参数并加载冷媒介质来实现涂层成形过程的温度控制是提升涂层成形质量的重要方法,为涂层成形过程创造良好的外界环境,解决涂层/基体热量累积的难题。
    近年来研究人员综合应用数值模拟与实验测试方法探究热喷涂成形过程中涂层/基体体系热量累积行为,研究其温度演变规律。基于数值模拟高效率、形象直观的特点,研究静态喷枪在不同喷涂距离、不同基体物性参数等条件下基体表面与截面温度场分布。在此基础上,研究动态喷枪不同加热运动轨迹对体系热量累积的影响,以及考虑涂层动态逐层搭接堆垛过程体系的温度变化。本文还归纳了多种测温设备在基体/涂层体系温度测量中的适用性及优缺点。还有学者分析了喷枪移动速度与运动轨迹对体系热量累积的影响,并力图通过控制喷涂工艺使体系温度处于合适范围。在综合对比压缩空气冷却、水冷却与干冰喷射冷却等不同冷媒介质对体系温度控制优缺点的基础上,提出干冰冷却具有洁净与散热的双重作用,可大幅度提升涂层的综合性能。
    本文归纳了热喷涂成形过程热量累积行为与温度控制的研究现状,其中热量累积行为研究主要通过数值模拟与实验测试进行,而温度控制主要是基于喷涂工艺优化与采用合适的冷媒介质冷却展开,分析了目前理论研究与实验测试中的不足。总体上,数值模拟在预测喷涂成形过程中涂层/基体体系的温度场演变规律,特别是针对喷涂件形状不规则或喷枪运动轨迹复杂的场合具有广阔的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁述宇
马国政
陈书赢
何鹏飞
王译文
王海斗
徐滨士
关键词:  热喷涂  热量累积  温度控制  数值模拟  冷媒介质    
Abstract: Thermal spraying technology is an important technology for surface enhancement of parts, which can be used to improve the comprehensive performance of parts such as wear resistance, corrosion resistance and high temperature resistance, and prolong the service life of parts. However, there exists deficiency including high temperature of flame and concentrated energy density during the forming process of thermal spraying, which makes the coating/substrate system accumulate a lot of heat. It leads to thermal cracks, even cracks, stripping and other phenomena of the coating. Thus the service reliability and working life of the coating were reduced.
    It is needed to solve the problem of coating quality degradation due to heat accumulation. The recent research focus is to study the heat accumulation behavior during the forming process of thermal spraying and monitor the temperature field of the coating/substrate system. According to the heat accumulation law of the system, the temperature control of coating forming process can be realized by adjusting the spraying process parameters and implementing the cold medium, which is an important method to improve the quality of coating forming, create a good external environment for coating forming process, and solve the problem of coating/substrate heat accumulation.
    In recent years, researchers have explored the heat accumulation behavior of coating/substrate system and studied the regularities of temperature evolution in the forming process of thermal spraying by applying numerical simulation and experimental testing methods comprehensively. Based on the characteristics of high efficiency and direct visualization in numerical simulation, the temperature distribution of the substrate surface and section was studied when the static spray gun sprayed at different distances and different substrate physical parameters. On this basis, the influence of dynamic spray gun on the heat accumulation of the system was studied in different heating trajectories, and the temperature change of the system was considered in the layer by layer stacking process of coating. This paper also summarizes the applicability, advantages and disadvantages of various instruments in measuring the temperature of substrate/coating system. Some scholars have analyzed the influence of the moving speed and trajectory of the spray gun on the heat accumulation of the system and tried to control the system temperature in an appropriate range through the spray process. Based on a comprehensive comparison of the advantages and disadvantages of different cooling media such as compressed air cooling, water cooling and dry ice jet cooling on the temperature control of the system, it is proposed that dry ice cooling has the dual functions of cleaning and cooling, which can greatly improve the overall performance of the coating.
    This paper summarizes the research status of heat accumulation behavior and temperature control in thermal spraying forming process. The research on heat accumulation behavior is mainly carried out through numerical simulation and experimental testing, while the temperature control is mainly carried out based on the optimization of spraying process and the adoption of appropriate cold media for cooling. The deficiencies in current theoretical research and experimental testing are analyzed. In general, numerical simulation has an important application prospect in predicting the evolution regularity of temperature field of coating/substrate system in spray forming process, especially in the case of irregular shape of spray parts or complex trajectory of spray gun.
Key words:  thermal spraying    heat accumulation    temperature control    numerical simulation    cold medium
               出版日期:  2019-11-10      发布日期:  2019-09-12
ZTFLH:  TG111.3  
基金资助: 国家自然科学基金(51675531;51535011);北京市自然科学基金 (3172038)
作者简介:  丁述宇,2017年6月毕业于装甲兵工程学院,获得工学学士学位。现为陆军装甲兵学院装备再制造国防科技重点实验室硕士研究生,在徐滨士院士、王海斗研究员与马国政副研究员的指导下进行研究。目前主要研究领域为表面工程。
    马国政,陆军装甲兵学院装备再制造技术国防科技重点实验室副研究员、硕士研究生导师。2008年本科毕业于西北工业大学,2010年与2014年在装甲兵工程学院装备再制造技术国防科技重点实验室分别获得硕士与博士学位。入选中国科协青年人才托举工程。现主要从事表面工程、再制造工程与摩擦学。
引用本文:    
丁述宇, 马国政, 陈书赢, 何鹏飞, 王译文, 王海斗, 徐滨士. 热喷涂成形过程热量累积行为与温度控制研究现状[J]. 材料导报, 2019, 33(21): 3644-3653.
DING Shuyu, MA Guozheng, CHEN Shuying, HE Pengfei, WANG Yiwen, WANG Haidou, XU Binshi. Research State on Heat Accumulation Behavior and TemperatureControl in Thermal Spraying Forming Process. Materials Reports, 2019, 33(21): 3644-3653.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110093  或          http://www.mater-rep.com/CN/Y2019/V33/I21/3644
1 Wang H J.Thermal spraying technology, National Defense Industry Press, China, 2010 (in Chinese).
王海军. 热喷涂工程师指南, 国防工业出版社, 2010.
2 An Y, Li S, Hou G, et al. Ceramics International, 2017, 43(6), 5319.
3 Vardelle A, Moreau C, Akedo J, et al. Journal of Thermal Spray Technology, 2016, 25(8), 1376.
4 Yang D, Gao Y, Liu H, et al. Surface & Coatings Technology, 2017,315, 9.
5 Bolot R, Li J, Bonnet R, Mateus C, et al. In: Proceedings of International Thermal Spray Conference, Orlando, 2003, pp. 949.
6 Bao Y, Gawne D T, Gao J, et al. Surface & Coatings Technology, 2013, 232(10), 150.
7 Yang E J, Luo X T, Yang G J, et al. Ceramics International, 2016, 42(1), 853.
8 Hao S, Li C J, Yang G J. Journal of Thermal Spray Technology, 2011, 20(1-2), 160.
9 Zhang Y, Matthews S, Hyland M. International Journal of Heat & Mass Transfer, 2017,115, 488.
10 Ji G L, Li F G, Li Q H, et al. Transactiongs of Materials and Heat Treatment, 2010, 31(3), 83 (in Chinese).
冀国良, 李付国, 李庆华, 等. 材料热处理学报, 2010, 31(3), 83.
11 Girolamo G D, Marra F, Schioppa M, et al. Surface & Coatings Technology, 2015,268, 298.
12 Guo C B. Numerical simulation on residual stress of high velocity air-fuel flame sprayed Fe-based amorphous coatings. Master's Thesis, Nanchang Hangkong University, China, 2015 (in Chinese).
郭崇波. 超音速火焰喷涂铁基非晶涂层热应力数值模拟. 硕士学位论文, 南昌航空大学, 2015.
13 Song Y, Xin Z, Wang T J, et al. Mechanics of Materials, 2014, 74(5), 26.
14 Heinig K P, Stephenson D A, Beyer T G. SAE International Journal of Materials and Manufacturing, 2017,10, 360.
15 Prasath B R, Tamilporai P, Shabir M F. International Journal of Thermal Sciences, 2010, 49(12), 2483.
16 Hejwowski T. Vacuum, 2010, 85(5), 610.
17 Hu K.Detailed explanation of engineering example of ANSYS ICEM CFD, Posts and Telecom Press, China, 2014 (in Chinese).
胡坤. ANSYS ICEM CFD工程实例详解, 人民邮电出版社, 2014.
18 Bolot R, Coddet C, Imbert M, et al. In : Conference Record of Thermal Spray: Meeting the Challenges of the 21th Century. Nice, France,1998, pp.439.
19 Bolot R, Imbert M, Coddet C. International Journal of Heat & Mass Transfer, 2001, 44(6), 1095.
20 Jadidi M, Mousavi M, Moghtadernejad S, et al. Journal of Thermal Spray Technology, 2015, 24(1-2), 11.
21 Selvan B, Ramachandran K, Pillai B C, et al. Journal of Thermal Spray Technology, 2011, 20(3), 534.
22 Yunus M, Rahman J F. International Journal of Modern Engineering Research, 2011, 1(2), 430.
23 Wu S C, Zhang H O, Tang Q, et al. International Journal of Thermal Sciences, 2009, 48(4), 674.
24 Meillot E, Vincent S, Bot C L, et al. Surface & Coatings Technology, 2015, 268, 257.
25 Mori S, Maruoka N, Okuyama K. International Journal of Heat and Mass Transfer, 2018, 118, 429.
26 Selvan B, Ramachandran K, Pillai B C, et al. European Physical Journal D, 2011, 61(3), 663.
27 Pourang K, Moreau C, Dolatabadi A. Journal of Thermal Spray Technology, 2015, 25(1-2), 44.
28 Bao Y, Zhang T, Gawne D T. Surface & Coatings Technology, 2005, 194(1), 82.
29 Li J, Bolot R, Liao H, et al. In: Proceedings of the Thermal Spray 2003: Advancing the Science & Applying the Technology. Ohio, USA, 2003, pp.971.
30 Bolot R, Deng S, Cai Z, et al. Journal of Thermal Spray Technology, 2014, 23(3), 296.
31 Zhang H, Xia W, Wang G, et al. Journal of Thermal Spray Technology, 2008, 17(2), 263.
32 Yi D, Zhang M. Applied Thermal Engineering, 2017, 123, 554.
33 Wang G, Chen Y, Zhang H. Thin Solid Films, 2003, 435(1-2), 124.
34 Zhang F, Cai Z, Liang H, et al. In : Chinese Automation Congress.Wuhan, China, 2016, pp.326.
35 Wang H D, Chen S Y, Ma G Z, et al. Journal of Mechanical Enginee-ring, 2017, 53(24), 1(in Chinese).
王海斗, 陈书赢, 马国政,等. 机械工程学报, 2017, 53(24), 1.
36 Hugot F, Patru J, Fauchais P, et al. Journal of Materials Processing Technology, 2007, 190(1), 317.
37 Sarafoglou C I, Stathatos E E, Pantelis D I, et al. International Journal of Surface Science and Engineering, 2015, 9(1), 96.
38 Chen Y, Liang X, Liu Y, et al. International Journal of Heat and Mass Transfer, 2010, 53(9-10), 2012.
39 Pan J, Hu S, Yang L, et al. Materials & Design, 2016, 96, 370.
40 Arabgol Z, Assadi H, Schmidt T, et al. Journal of Thermal Spray Technology, 2014, 23(1-2), 84.
41 Chen C, Xie Y, Verdy C, et al. Surface and Coatings Technology, 2017, 326, 355.
42 Liu J, Bolot R, Costil S. Surface and Coatings Technology, 2015, 268, 241.
43 Liu J, Wang Y, Li H, et al. Journal of Materials Processing Technology, 2017, 249, 471.
44 Xu H, Bao Y, Gawne D T, et al. Progress in Organic Coatings, 2016, 101, 407.
45 Zhang T, Bao Y, Gawne D T, et al. Progress in Organic Coatings, 2011, 70(1), 45.
46 Zhou C, Li L, Wang J, et al. Journal of Alloys & Compounds, 2018, 743, 383.
47 Chen H Y , Chen C. Construction and Building Materials, 2016, 126, 130.
48 Rao K V S, Girisha K G, Shree R P, et al. Materials Today: Procee-dings, 2017, 4(9), 10249.
49 Sridhar S, Saha A K, Vinolia K, et al. Nuclear Engineering and Design, 2018, 340, 260.
50 Sharifi N, Pugh M, Moreau C, et al. Surface and Coatings Technology, 2016, 289, 29.
51 Rahmane M, Soucy G, Boulos M I. Review of Scientific Instruments, 1995, 66(6), 3424.
52 Mauer G , Vaßen R , Stöver D. Journal of Thermal Spray Technology, 2011, 20(3), 391.
53 Kim K S, Park J M, Choi S, et al. Journal of Physics D: Applied Phy-sics, 2008, 41(6), 065201.
54 Zhang Y, Hyland M, Tran A T, et al. Journal of Thermal Spray Techno-logy, 2016, 25(1-2), 71.
55 Yang K, Fukumoto M, Yasui T, et al. Journal of Thermal Spray Techno-logy, 2010, 19(6), 1195.
56 Goutier S , Vardelle M , Fauchais P. Journal of Thermal Spray Technology, 2012, 21(3-4), 522.
57 Chen Y X. Modeling and experimental investigations of thick carbon steel coating preparation by automatic high velocity arc spraying. Ph.D. Thesis, Academy of Armored Forces Engineering, China, 2010 (in Chinese).
陈永雄. 自动化高速电弧喷涂碳钢涂层厚成形的数值模拟与试验. 博士学位论文, 装甲兵工程学院, 2010.
58 Zhang Y J, Zhang C, Deng S H, et al. Materials Review A: Review Papers, 2016, 30(12), 44(in Chinese).
张燕军, 张超, 邓思豪,等. 材料导报:综述篇, 2016, 30(12), 44.
59 Chen Y X, Liang X B, Liu Y, et al. Transactions of the China Welding Institution, 2010, 31(8), 97 (in Chinese).
陈永雄, 梁秀兵, 刘燕,等. 焊接学报, 2010, 31(8), 97.
60 Tian H L, Wang C L, Guo M Q, et al. Heat Treatment of Materials, 2017, 42(12), 117 (in Chinese).
田浩亮, 王长亮, 郭孟秋,等. 金属热处理, 2017, 42(12), 117.
61 Jones P D A, Duncan S R, Rayment T, et al. IEEE Transactions on Control Systems Technology, 2006, 15(1), 1.
62 Cai Z H, Li Z, Zeng C N, et al. Journal of Wuhan University of Technology, 2016, 38(1), 84(in Chinese).
蔡振华, 李正, 曾春年,等. 武汉理工大学学报, 2016, 38(1), 84.
63 Hernández-Bocanegra C A, Acosta-González F A, Zhou X, et al. Experimental Thermal and Fluid Science, 2013, 44, 147.
64 Khan A N, Lu J. Surface and Coatings Technology, 2007, 201(8), 4653.
65 Kang D, Strand R K. Applied Energy, 2018, 222, 915.
66 Bianchi L, Leger A C, Vardelle M, et al. Thin Solid Films, 1997, 305(1-2), 35.
67 Hui R, Cook W, Sun C, et al. Deposition, Surface & Coatings Technology, 2011, 205(11), 3512.
68 Bellerová H, Tseng A A, Pohanka M, et al. International Journal of Thermal Sciences, 2012, 62, 127.
69 Feng Q, Tim B, Liang H. Thermal Spray Technology, 2017, 9(2), 59(in Chinese).
Feng Qin, Tim Bao, Liang He. 热喷涂技术, 2017, 9(2), 59.
70 Dong S, Song B, Hansz B, et al. Applied Surface Science, 2011, 257(24), 10828.
71 Uyarcan M, Kayaardi S. British Poultry Science, 2018, 59(2), 141.
72 Dong S, Song B, Hansz B, et al. Journal of Thermal Spray Technology, 2012, 22(1), 61.
73 Dong S, Song B, Hansz B, et al. Materials Letters, 2012, 66(1), 289.
74 Uhlmann E, El Mernissi A. Production Engineering, 2008, 2(2), 133.
75 Dong S J, Song B, BernardHansz, et al. China Surface Engineering, 2012, 25(6), 10(in Chinese).
董淑娟, 宋波, BernardHansz,等. 中国表面工程, 2012, 25(6), 10.
76 Dong S, Song B, Hansz B, et al. Surface and Coatings Technology, 2013, 225, 58.
77 Dong S, Song B, Liao H, et al. Surface and Coatings Technology, 2015, 268, 46.
78 Dong S, Song B, Liao H, et al. Surface and Coatings Technology, 2015, 268, 36.
79 Song B, Dong S, Coddet P, et al. Journal of Thermal Spray Technology, 2012, 22(2-3), 345.
80 Dong S, Song B, Hansz B, et al. Surface and Coatings Technology, 2013, 220, 199.
81 Dong S, Song B, Hansz B, et al. Journal of Thermal Spray Technology, 2012, 22(2-3), 213.
82 Fukanuma H, Huang R, Tanaka Y, et al. Journal of Thermal Spray Technology, 2009, 18(5-6), 965.
[1] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[2] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[3] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[4] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[5] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[6] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[7] 陈枭, 白小波, 王洪涛, 纪岗昌. 超音速火焰喷涂多尺度WC-17Co粉末制备的金属陶瓷涂层的组织结构与性能[J]. 材料导报, 2019, 33(4): 684-688.
[8] 浦娟, 谢依汝, 胡庆贤, 胥国祥, 朱蔡琛. 单缆式焊丝GMAW电弧物理行为的数值模拟[J]. 材料导报, 2019, 33(4): 689-693.
[9] 贾森森, 王永彪, 肖艳秋, 吴玉娟, 彭立明, 刘建秀, 刘新田. 镁合金微观组织的相场法模拟进展[J]. 材料导报, 2019, 33(19): 3306-3312.
[10] 李荣涛, Christopher Y. TUAN. 考虑热湿影响的氯盐侵蚀下混凝土中多相传输与相变模拟[J]. 材料导报, 2019, 33(18): 3043-3049.
[11] 刘健健,朱诚意,李光强. 连铸结晶器铜板表面涂镀层应用研究进展[J]. 材料导报, 2019, 33(17): 2831-2838.
[12] 代文杰,潘诗琰,申小平,徐驰,范沧. 介观尺度下液相烧结过程的数值模拟研究进展[J]. 材料导报, 2019, 33(17): 2929-2938.
[13] 魏岑,李向明. 一种不稳定的共晶生长方式:倾斜共晶生长的研究进展[J]. 材料导报, 2019, 33(15): 2532-2537.
[14] 李文旭, 马昆林, 龙广成, 谢友均, 马聪, 李宁. 自密实混凝土拌合物稳定性动态监测及数值模拟研究进展[J]. 材料导报, 2019, 33(13): 2206-2213.
[15] 丁述宇, 马国政, 徐滨士, 王海斗, 陈书赢, 何鹏飞, 王译文. 等离子喷涂层微观成形过程数值模拟研究现状[J]. 材料导报, 2019, 33(11): 1889-1896.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[4] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed