Please wait a minute...
材料导报  2019, Vol. 33 Issue (17): 2929-2938    https://doi.org/10.11896/cldb.18090003
  金属与金属基复合材料 |
介观尺度下液相烧结过程的数值模拟研究进展
代文杰1,潘诗琰1,2,申小平2,徐驰1,范沧1
1 南京理工大学材料科学与工程学院,南京 210014
2 南京理工大学工程训练中心,南京 210014
Research Progress on the Numerical Simulation of Liquid Phase Sintering in the Mesoscopic Scale
DAI Wenjie1, PAN Shiyan1,2, SHEN Xiaoping2, XU Chi1, FAN Cang1
1 The Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210014
2 The Department of Engineering Training Center, Nanjing University of Science and Technology, Nanjing 210014
下载:  全 文 ( PDF ) ( 17281KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 液相烧结是粉末冶金制造的关键技术,可以获得接近全致密化的高性能材料,为高熔点合金、硬质合金和金属陶瓷等材料的制备开辟了新途径。液相烧结过程中的组织演变及致密化行为直接决定了零件的力学性能和尺寸精度。介观尺度的数值模拟着眼于数十至上千个颗粒的系统,能够明确致密化机制,并准确、直观地反映液相分布、孔隙演化、颗粒生长等组织演变过程,是联系微观结构与宏观性能的重要桥梁,已成为液相烧结过程研究的热点方向。
   然而,液相烧结过程涉及颗粒运动、固液相变、流动等多种因素的耦合作用,对液相烧结数值模拟研究和实际应用提出了巨大的挑战。目前,液相烧结数值模拟的一种主要思路是将液相烧结过程简化为颗粒重排、固相溶解/析出和骨架形成三个界限分明的阶段,然后分别针对每个阶段开展模拟,从而在降低模拟难度的基础上反映液相烧结的部分显微组织演化机制及影响因素。其中,围绕颗粒重排和固相溶解/析出阶段的研究最为丰富,并取得了较多成果。基于离散元法的模型和液桥粗化模型主要用于颗粒重排阶段的研究,模型考虑了颗粒间的碰撞、滑动和粘结颗粒间烧结应力等的作用,并兼顾液相烧结中存在的表面张力和液相粘性力,描述了颗粒在液相中的重排和孔洞演化及致密化等重要现象, 但晶粒生长和熟化的机制通常被忽略。固相溶解/析出阶段可简化为熟化过程,主要使用蒙特卡洛方法和相场方法研究该阶段的颗粒生长、颗粒形状变化和颗粒粒径分布的变化规律等。其中大尺度三维模拟预测的粒径分布和晶粒生长情况等结果能够与液相烧结中后期的实验结果对比,并吻合良好。实际液相烧结各阶段间并无明显界限,分阶段模拟的研究思路仍难以准确描述液相烧结的全过程。近年来研究者们提出了采用耦合模型的研究思路,旨在同时描述液相烧结中的颗粒运动、颗粒生长以及液体流动等行为。耦合模型克服了分阶段简化模型带来的问题,显著提高了模拟精度,准确预测了组织演化,并获得了烧结致密化率等定量数据。为促进基于耦合模型的数值模拟在液相烧结中的实际应用,仍需克服三维模型数值求解困难、实验验证缺乏等问题。
   本文回顾了介观尺度下液相烧结数值模拟方法的研究进展,分析了各种模拟方法描述液相分布、孔隙演化、颗粒长大以及致密化等问题的可靠性、准确性和优缺点,最后提出液相烧结数值模拟方法的发展前景及意见。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
代文杰
潘诗琰
申小平
徐驰
范沧
关键词:  液相烧结  数值模拟  粉末冶金  介观尺度  耦合模型    
Abstract: Liquid phasesintering (LPS) is a key technology in powder metallurgy for manufacturing high performance materials.LPS provides an innovative and efficient way for manufacturing nearly fully dense components made of refractory alloys, hard alloys, cermets, etc.The microstructure evolution and densification during LPS directly determine the mechanical properties and dimensional accuracy of the part. Numerical simulation at the mesoscopic/grain scale offers direct insights into the microstructure evolution of the sintered body, and also deals with complex densification mechanisms and their interplays. Hence, numerical simulations of LPS in the mesoscopic scale have gained enormous attentions inrecent years.
LPS,involving grain growth and motion, solid-liquid transition and multi-phase flow, etc., presents a great challenge to the numerical simulation and its further applicationin industry. One common way, performing the numerical simulation of LPS, is based on a general assumption that LPS could be resolved into the three stages of grain rearrangement, grain dissolution/precipitation, and skeleton formation. Therefore, each stage of LPS is independently studied for simplification to still reveal some of the microstructure evolution mechanisms and affecting factors. In all the regarding findings, those on grain rearrangement and grain dissolution/precipitation are most fruitful.For grain rearrangement, studies were carried out based on the discrete element method, the liquid bridge coalescence model, etc. During rearrangement, the displacement of each particle was simulated in the viscous liquid under various forces, including inter-particle collision force, sliding force, sintering force and capillary force, etc. In these simulations, the grain motion, pore evolution and densification during grain rearrangement were usually described ignoring the grain growth and coarsening mechanisms. Phase field method and Monte-Carlo method were often adopted to simulate the grain dissolution/precipitation stage, which was treated as the classic Ostwald ripening. Large-scale three-dimensional simulations carried out by phase field method and Monte-Carlo method provided the particle size distribution and the growth kinetics very identical to the experimental observations. However, the simulations focusing on each independent stage is not applicable to describe the whole LPS process and the mechanisms under the experimental conditions, since the ranges overlapped for the three stages of LPS. Recently, the coupling strategies were presented to simulate LPS involving the liquid flow, grain rearrangement and grain growth simultaneously. The quantitative results of microstructure evolution and the sintering kinetics were successfully achieved by several coupled models for LPS, and the results showed higher accuracy than the models simulating only one stage. However, efficient numerical solutions for the three-dimensional simulations and experimental validations are required to promote the industry application of coupled simulations in the future.
This paper reviews the recent developments in numerical modeling of LPS in the mesoscopic/grain scale.The reliabilities, accuracies, advantages and disadvantages of each model/method for describing liquid redistribution pore evolution, grain growth and densification are compared and evaluated. Some advice about the future developments of the numerical simulation for LPS is thus given.
Key words:  liquid phase sintering    numerical simulation    powder metallurgy    mesoscopic scale    coupling model
               出版日期:  2019-09-10      发布日期:  2019-07-23
ZTFLH:  TB303  
基金资助: 国家自然科学基金委项目(51501091;51371099);江苏特聘教授
作者简介:  代文杰,2013年6月毕业于重庆大学,获得工学学士学位。现为南京理工大学材料学院的博士研究生,在范沧教授和潘诗琰老师的指导下进行研究。目前主要研究领域为基于相场法研究液相烧结过程的机理和现象。
潘诗琰,男,博士,南京理工大学工程训练中心讲师。于2007年从合肥工业大学获得学士学位,于2013年从东南大学取得博士学位,长期从事合金凝固组织演化的相场模拟研究。关于凝固过程微观组织的数值研究方面的工作成绩得到了国内外同行的认可,相关成果先后发表在Acta Materialia、Scripta Materialia、Scientific Reports、Computational Materials Science、Calphad、ISIJ International、Intermetallics和《物理学报》等国际、国内权威期刊,其中SCI收录20篇次、EI收录25篇次,并多次参加国际、国内学术会议。主持国家自然科学基金青年基金项目1项,作为主要参与人参加国家自然科学基金面上项目2项。Journal of Applied Physics、Advances in Mathematical Physics、Computational Materials Science、China Foundry期刊审稿人。
引用本文:    
代文杰,潘诗琰,申小平,徐驰,范沧. 介观尺度下液相烧结过程的数值模拟研究进展[J]. 材料导报, 2019, 33(17): 2929-2938.
DAI Wenjie, PAN Shiyan, SHEN Xiaoping, XU Chi, FAN Cang. Research Progress on the Numerical Simulation of Liquid Phase Sintering in the Mesoscopic Scale. Materials Reports, 2019, 33(17): 2929-2938.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090003  或          http://www.mater-rep.com/CN/Y2019/V33/I17/2929
1 Zhong R X, Lu B P.<i>Materials Review</i>, 2008, 22(3), 40(in Chinese).<br />
钟仁显, 卢百平. 材料导报, 2008, 22(3), 40.<br />
2 Ruan J M. <i>The theory of powder metallurgy</i>, Machine Industry Press, China, 2012(in Chinese).<br />
阮建明. 粉末烧结原理, 机械工业出版社, 2010.<br />
3 Guo G C.<i>Liquid phase sintered materials in powder metallurgy</i>, Chemical Industry Press, China, 2003 (in Chinese).<br />
郭庚辰. 液相烧结粉末冶金材料, 化学工业出版社工业装备与信息工程出版中心, 2003.<br />
4 Kresse T, Meinhard D, Bernthaler T, et al.<i>International Journal of Refractory Metals & Hard Materials</i>, 2018, 75, 287.<br />
5 Maneshian M H, Simchi A.<i>Journal of Alloys & Compounds</i>, 2008, 463(1), 153.<br />
6 Maximenko A L, Olevsky E A.<i>Scripta Materialia</i>, 2018, 149,75.<br />
7 German R M, Suri P, Park S J.<i>Journal of Materials Science</i>, 2009, 44(1), 1.<br />
8 Lee S M, Kang S J L. <i>Pore Filling Theory</i>, 1998, 46(9), 3191.<br />
9 Villanueva W, Amberg G. <i>International Journal of Multiphase Flow</i>, 2006, 32(9), 1072.<br />
10 Villanueva W, Gr nhagen K, Amberg G.<i>Computational Materials Science</i>, 2009, 47(2), 512.<br />
11 Zheng Q, Lim L C.<i>Scripta Materialia</i>, 2010, 62(8), 544.<br />
12 Nanda K K, Maisels A, Kruis F E, et al.<i>Journal of Physical Chemistry C</i>, 2008, 112(35), 13488.<br />
13 Koparde V N, Cummings P T.<i>Journal of Physical Chemistry B</i>, 2005, 109(51), 24280.<br />
14 Eggersdorfer M L, Kadau D, Herrmann H J, et al.<i>Langmuir</i>, 2011, 27(10), 6358.<br />
15 Svoboda J, Riedel H, Gaebel R. <i>Acta Materialia</i>, 1996, 44(44), 3215.<br />
16 Olevsky E A, German R M, Upadhyaya A. <i>Acta Materialia</i>, 2000, 48(5), 1167.<br />
17 Jin P S, Hwan C S, Johnson J L, et al. <i>Materials Transactions</i>, 2006, 47(11), 2745.<br />
18 Alvarado-Contreras J A, Olevsky E A, Maximenko A L, et al.<i>Acta Materialia</i>, 2014, 65(65), 176.<br />
19 Delannay F, Missiaen J M.<i>Acta Materialia</i>, 2016, 106, 22.<br />
20 Parhami F, Mcmeeking R M.<i>Mechanics of Materials</i>, 1998, 27(2), 111.<br />
21 Nikolic Z S, Wakai F.<i>Mathematical & Computer Modelling</i>, 2012, 55(3), 1251.<br />
22 Petersson A, Agren J.<i>Acta Materialia</i>, 2005, 53(6), 1673.<br />
23 Chaix J M, Lee S M, Martin C L.<i>Computer study of microstructure formation by rearrangement during liquid phase sintering</i>, springer, US, 1999.<br />
24 Ravash H, Vanherpe L, Vleugels J, et al.<i>Journal of the European Cera-mic Society</i>, 2017, 37(5), 2265.<br />
25 Tikare V, Cawley J D.<i>Acta Materialia</i>, 1998, 46(4), 1333.<br />
26 Malik Tahir A , Malik A , Amberg G.<i>Modelling and Simulation in Materials Science and Engineerin</i>g, 2016, 24(7), 709.<br />
27 Lee S M, Chaix J M, Martin C L, et al.<i>Metals & Materials</i>, 1999, 5(2), 197.<br />
28 Martin S, Guessasma M, Léchelle J, et al.<i>Computational Materials Science</i>, 2014, 84, 31.<br />
29 Huppmann W J, Riegger H. <i>Acta Metalurgical</i>, 1975, 23,965.<br />
30 Heady R B, Cahn J W.<i>Metallurgical Transactions</i>, 1970, 1(1), 185.<br />
31 Tikare V, Cawley J D.<i>Acta Materialia</i>, 1998, 46(4), 1343.<br />
32 Anderson M P, Srolovitz D J, Grest G S, et al. <i>Acta Metallurgica</i>, 1984, 32(5), 783.<br />
33 Lee S, Rickman J M, Rollett A D, et al.<i>Acta Materialia</i>, 2007, 55(2), 615.<br />
34 Tewari A, Gokhale A M.<i>Materials Characterization</i>, 2000, 44(3), 259.<br />
35 Luque A, Aldazabal J, Martinezesnaola J M, et al.<i>Mathematics and Computers in Simulation</i>, 2011, 81(11), 2564.<br />
36 Matsubara H, Brook R J. <i>Key Engineering Materials</i>, 1997, 132-136,710.<br />
37 Matsubara H.<i>Computational Materials Science</i>, 1999, 14(1-4),125.<br />
38 Pao Y X, Zhang X Y, Zhou K C. <i>Materials Science and Engineering of Powder Metallurgy</i>, 2012, 17(1), 18 (in Chinese).<br />
鲍寅祥, 张晓泳, 周科朝. 粉末冶金材料科学与工程, 2012, 17(1), 18.<br />
39 Liu J Y, Zhang X Y, Zhou K C, et al.<i>Transactions of Nonferrous Metals Society of China</i>, 2010, 20(5), 961(in Chinese).<br />
刘建元, 张晓泳, 周科朝, 等. 有色金属学报, 2010, 20(5), 961.<br />
40 Liu J Y.Monte-Carlo simulation of microstructure development during the sintering process. Doctor's Thesis, Central South University, China, 2011 (in Chinese).<br />
刘建元. 烧结过程中微观结构演变行为的Monte Carlo模拟.博士学位论文,中南大学, 2011.<br />
41 Steinbach I.<i>Modelling and Simulation in Materials Science and Enginee-ring</i>, 2009, 17(7),52.<br />
42 Pan J.<i>International Materials Reviews</i>, 2003, 48(2), 69.<br />
43 Warren J A, Murray B T.<i>Modelling & Simulation in Materials Science & Engineering</i>, 1996, 4(4), 215.<br />
44 Kim S G.<i>Acta Materialia</i>,2007, 55(19), 6513.<br />
45 Voorhees P W, Glicksman M E. <i>Acta Metallurgica</i>, 1984, 32(11), 2001.<br />
46 Akaiwa N, Meiron D I.<i>Physical Review E</i>,1996, 54(1), R13.<br />
47 Hillert M. <i>Acta Metallurgica</i>, 1965, 13(3), 227.<br />
48 WangK G, Yan H, Mohwald H. <i>Solid State Phenomena</i>, 2011, 172, 1112.<br />
49 Sundman B, Jansson B, Anderson J O.<i>Calphad-computer Coupling of Phase Diagrams & Thermochemistry,</i>2011, 26(4),599.<br />
50 Rowenhorst D J, Kuang J P, Thornton K, et al. Acta Materialia, 2006, 54(8),2027.<br />
51 Johnson J L, Campbell L G, Park S J, et al. <i>Metallurgical & Materials Transactions A</i>, 2009, 40(2), 426.<br />
52 Liu P L, Lin S T. <i>Materials Transactions</i>, 2003, 44(5), 924.<br />
53 Choi K, Choi J W, Kim D Y, et al.<i>Acta Materialia</i>,2000, 48(12), 3125.<br />
54 Kim J, Kang S L, Lee J.<i>Journal of the American Ceramic Society</i>,2010, 88(2), 500.<br />
55 Kang M K, Kim D Y, Nong M H.<i>Journal of the European Ceramic Society</i>,2002, 22(5), 603.<br />
56 Dong W M, Jain H S, Harmer M P. <i>Journal of the American Ceramic Society</i>, 2005, 88(7),1702.<br />
57 He Y, Yi S, Smith J E.<i>Journal of Materials Science</i>, 2005, 40(15), 4067.<br />
58 Shinagawa K. <i>Acta Materialia</i>, 2014, 66(1), 360.<br />
59 Shinagawa K. <i>Acta Materialia</i>, 2014, 66(1), 360.<br />
60 Nikolic Z S, Shinagawa K, Randjelovic B.<i>A method for simulation of grain coarsening due to diffusion in capillary liquid bridge</i>, Atlantis Press, US, 2016.
[1] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[2] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[3] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[4] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[5] 吴靓, 汤智, 杨格, 刘艳, 许艳飞, 钱锦文, 肖逸锋, 贺跃辉. 用于过滤膜的梯度孔径Ni-Cr-Fe多孔材料的制备及性能[J]. 材料导报, 2019, 33(8): 1376-1382.
[6] 阴中炜, 孙彦波, 张绪虎, 王亮, 徐桂华. 粉末钛合金热等静压近净成形技术及发展现状[J]. 材料导报, 2019, 33(7): 1099-1108.
[7] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[8] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[9] 浦娟, 谢依汝, 胡庆贤, 胥国祥, 朱蔡琛. 单缆式焊丝GMAW电弧物理行为的数值模拟[J]. 材料导报, 2019, 33(4): 689-693.
[10] 魏岑,李向明. 一种不稳定的共晶生长方式:倾斜共晶生长的研究进展[J]. 材料导报, 2019, 33(15): 2532-2537.
[11] 李文旭, 马昆林, 龙广成, 谢友均, 马聪, 李宁. 自密实混凝土拌合物稳定性动态监测及数值模拟研究进展[J]. 材料导报, 2019, 33(13): 2206-2213.
[12] 丁述宇, 马国政, 徐滨士, 王海斗, 陈书赢, 何鹏飞, 王译文. 等离子喷涂层微观成形过程数值模拟研究现状[J]. 材料导报, 2019, 33(11): 1889-1896.
[13] 田捍卫, 王爱琴, 谢敬佩, 苌清华, 刘帅洋. 铜铝复合板铸轧工艺优化及实验分析[J]. 材料导报, 2019, 33(10): 1706-1711.
[14] 安晓龙, 吕云卓, 覃作祥, 陆兴. 同轴送粉激光3D打印光粉耦合作用以及熔池气液界面追踪数值模拟的研究进展[J]. 材料导报, 2019, 33(1): 167-174.
[15] 耿汝伟, 杜军, 魏正英, 魏培. 金属增材制造中微观组织相场法模拟研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1145-1150.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed