Please wait a minute...
材料导报  2019, Vol. 33 Issue (11): 1889-1896    https://doi.org/10.11896/cldb.18060081
  金属与金属基复合材料 |
等离子喷涂层微观成形过程数值模拟研究现状
丁述宇1, 马国政1, 徐滨士1, 王海斗1, 陈书赢1,2, 何鹏飞1, 王译文1
1 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
2 中国航天科研训练中心人因工程重点实验室,北京 100094
Research Status on Numerical Simulation of Plasma Spraying Coating in Micro-forming Process
DING Shuyu1, MA Guozheng1, XU Binshi1, WANG Haidou1, CHEN Shuying1,2, HE Pengfei1, WANG Yiwen1
1 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072
2 National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094
下载:  全 文 ( PDF ) ( 2620KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 等离子喷涂具有焰流温度高、粒子速度快、能量密度高等特点,是零件表面强化和再制造常用的表面工程技术之一,在耐磨、防腐、热障等诸多领域具有重要应用。涂层的质量往往决定零件的服役性能和使用寿命。等离子喷涂层的成形质量受众多喷涂要素和工艺参数的交叉耦合作用。传统优化喷涂工艺的方法是依据实践经验确定主要工艺参数的可行域,然后反复进行工艺参数调节和涂层性能验证来获得相对合适的工艺参数,这种方式存在成本高、效率低、可靠性差的缺陷。数值模拟作为一种新兴的科学研究方法,在等离子喷涂领域不仅有助于优化喷涂工艺参数,而且有助于深入理解喷涂成形原理和涂层微观构筑过程。研究者们借助数值模拟手段,探究等离子喷涂过程的微观机理,模拟实验中无法观测瞬时、高速的现象,并且指导优化喷涂工艺参数,改善喷枪机械结构,在提升涂层质量与性能上发挥重要作用。本文总结了数值模拟中有限元模拟的研究步骤,综述了近年来国内外数值模拟在等离子喷涂层微观成形过程应用的研究现状。在等离子射流形成的数值模拟中,研究领域从单一物理场转化为多物理场耦合,能较为准确地把握等离子喷枪中复杂的物理现象;其数值模拟范围主要包括等离子射流的温度场模拟、湍流模拟与电磁特性模拟等。在喷涂粒子与射流交互作用数值模拟中,研究者结合实验探究喷涂粒子与大气物性参数对飞行过程的影响,获取最佳的喷涂距离、送粉管角度等工艺参数;其数值模拟范围包括等离子射流中粒子加速过程模拟、加热过程模拟、飞行轨迹和空间分布模拟。在喷涂粒子铺展凝固过程的数值模拟中,将瞬时、高速的铺展凝固过程形象化,掌握基体与大气物性参数对该过程的影响。其数值模拟范围包括粒子撞击铺展过程模拟与凝固生长过程模拟。本文针对模拟过程中存在的湍流模型不够准确,飞行粒子的蒸发与破碎现象研究不够深入,以及多个粒子搭接堆垛成形过程探索较少等问题,展望了数值模拟在等离子涂层微观成形过程的研究方向,并提出基于喷涂成形过程数值模拟建立涂层虚拟成形系统的构想。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁述宇
马国政
徐滨士
王海斗
陈书赢
何鹏飞
王译文
关键词:  等离子喷涂  涂层成形  数值模拟  飞行粒子  传热传质    
Abstract: Plasma spraying is characterized by the high temperature of flame flow, fast particle velocity and high energy density, which is one of the common surface engineering techniques for surface strengthening and remanufacturing of parts and has important applications in many fields, such as wear-resisting, anti-corrosion and thermal barrier. The service performance and life of the product is often determined by the quality of the coating. The forming quality of plasma spraying coating is determined by the cross-coupling of many spray elements and process parameters. The traditional method of optimizing spraying process is to determine the feasible region of main process parameters according to practical experience, which has to adjust the progress parameters and test the performance of the coating over and over again. This method has the disadvantage of high cost, low efficiency and poor reliability. Numerical simulation is a high-efficiency, low-cost scientific research method. In the field of plasma spraying, it can not only optimize the spraying process parameters, but also help deeply understand the principle of spray forming and the process of coating microcosmic construction. With the help of numerical simulation, the researchers have explored the microscopic mechanism of the plasma spraying process, the transient and high-speed phenomena which could not be observed in experiment. What’s more, it can also guide the optimization of spray process parameters, improve the mechanical structure of the spray gun, and play an important role in improving the coating quality and performance. This paper summarizes the research steps of finite element simulation in numerical simulation and reviews the micro-forming process of plasma sprayed coating in recent research state of numerical simulation. As for the numerical simulation of plasma jet formation, the research field has transformed from a single physics field to a multi-physics coupling. By this mean, it can accurately grasp the complex physical phenomena in plasma spray guns. The numerical simulation ranges includes temperature field simulation of plasma jet, turbulent flow simulation, and electromagne-tic characteristic simulation. For the numerical simulation of the interaction between spray particles and jets, the researchers have explored the influence of spraying particles and atmospheric physical parameters on the flight process in combination with experiments, and obtained the best spraying distance, powder feed tube angle and other technological parameters. The numerical simulation ranges include particle acceleration simulation, heating process simulation, flight track and spatial distribution simulation in plasma jet. In the numerical simulation of the solidification and spreading process of sprayed particle, it can visualize the instantaneous, high-speed spread solidification process, and grasp the influence of substrate and atmospheric physical parameters on the process. The numerical simulation ranges includes the simulation of impact deposition process and the solidification growth process of particle. There are some problems in the numerical simulation, which are the inaccuracy of the turbulence model, the superficial research on the evaporation and fragmentation phenomena of flying-particles, and the less exploration of multiple particles overlap stacking processes. It prospects the research direction of the numerical simulation in the micro-forming process of plasma coatings and proposes the conception of establishing a virtual coating forming system, which is based on the numerical simulation of the spray forming process.
Key words:  plasma spraying    coating forming    numerical simulation    flying particle    heat and mass transfer
                    发布日期:  2019-05-21
ZTFLH:  TG148  
基金资助: 国家自然科学基金(51675531;51535011);北京市自然科学基金 (3172038)
通讯作者:  magz0929@163.com   
作者简介:  丁述宇,2017年6月毕业于装甲兵工程学院,获得工学学士学位。现为陆军装甲兵学院装备再制造国防科技重点实验室硕士研究生,在徐滨士院士、王海斗研究员与马国政副研究员的指导下进行研究。目前主要研究领域为表面工程。 马国政,陆军装甲兵学院装备再制造技术国防科技重点实验室副研究员、硕士研究生导师。2008年本科毕业于西北工业大学,2010年与2014年在装甲兵工程学院装备再制造技术国防科技重点实验室分别获得硕士与博士学位。入选中国科协青年人才托举工程。现主要从事表面工程、再制造工程与摩擦学研究。王海斗,研究员,博士生导师,陆军装甲兵学院装备再制造技术国防科技重点实验室常务副主任。2003年毕业于清华大学并获得博士学位。国家杰出青年科学基金获得者,现任国防973计划首席科学家。目前的研究领域包括表面工程、再制造和摩擦学研究。
引用本文:    
丁述宇, 马国政, 徐滨士, 王海斗, 陈书赢, 何鹏飞, 王译文. 等离子喷涂层微观成形过程数值模拟研究现状[J]. 材料导报, 2019, 33(11): 1889-1896.
DING Shuyu, MA Guozheng, XU Binshi, WANG Haidou, CHEN Shuying, HE Pengfei, WANG Yiwen. Research Status on Numerical Simulation of Plasma Spraying Coating in Micro-forming Process. Materials Reports, 2019, 33(11): 1889-1896.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060081  或          http://www.mater-rep.com/CN/Y2019/V33/I11/1889
1 Vardelle A, Moreau C, Akedo J, et al. Journal of Thermal Spray Technology,2016,25(8),1376.
2 Wang H D, Chen S Y, Ma G Z, et al. Journal of Mechanical Enginee-ring,2017,53(24),1(in Chinese).
王海斗,陈书赢,马国政,等.机械工程学报,2017,53(24),1.
3 Bobzin K, te M, Knoch M A, et al. In: Conference Record of the 14th High-Tech Plasma Processes Conference. Neubiberg,2017.
4 Peng P, Song H, Zhang T, et al. Computers & Chemical Engineering,2017,97,183.
5 Balachandran K, Matar M, Trujillo J J. Journal of Control and Decision,2016,3(4),267.
6 Votta E, Presicce M, Della Corte A, et al. International Journal for Numerical Methods in Biomedical Engineering,2016,33(9),e02849.
7 Qiao J H, Bolot R, Liao H, et al. International Journal of Thermal Sciences,2013,65(65),120.
8 Lazzaroni C, Baba K, Nikravech M, et al. Journal of Physics D: Applied Physics,2017,45(48),485207.
9 Ivchenko D, Zhang T, Mariaux G, et al. Journal of Thermal Spray Technology,2018,27(1-2),3.
10 Ranjbar-Far M, Absi J, Mariaux G, et al. Materials & Design,2010,31(2),772.
11 Fan Q, Lu W, Wang F. Journal of Materials Processing Technology,2005,166(2),224.
12 Abderrahmane A, Sahnoun M, Ganaoui M E. European Physical Journal Applied Physics,2017,78(3),4815.
13 Trelles J P, Pfender E, Heberlein J V R. Journal of Physics D: Applied Physics,2007,40(18),5635.
14 Pei W, Wei Z, Zhao G, et al. Computational Materials Science,2015,103(9),8.
15 Benramoul L, El-Hadj A A. Applied Surface Science,2011,258(2),962.
16 Zhang Y. Research of jet characteristic and drop spreading solidification behavior in plasma spraying process. Ph.D. Thesis, Southwest Petroleum University, China,2015(in Chinese).
张勇.等离子喷涂射流特性及熔滴铺展凝固行为研究.博士学位论文,西南石油大学,2015.
17 Trelles J P. Plasma Sources Science & Technology,2013,22(22),5017.
18 Alaya M, Chazelas C, Mariaux G, et al. Journal of Thermal Spray Technology,2015,24(1-2),3.
19 Lisnyak M, Cunha M D, Bauchire J M, et al. Journal of Physics D: Applied Physics,2017,50(31),315203.
20 Hu F S, Wei Z Y, Liu B L, et al. Materials Science & Technology,2013,21(2),137(in Chinese).
胡福胜,魏正英,刘伯林,等.材料科学与工艺,2013,21(2),137.
21 Trelles J P. IEEE Transactions on Plasma Science,2011,39(11),2870.
22 Trelles J P. IEEE Transactions on Plasma Science,2014,42(10),2852.
23 Hu F S, Wei Z Y, Tan C, et al. Journal of Xi’an Jiaotong University,2013,47(9),92(in Chinese).
胡福胜,魏正英,谭超,等.西安交通大学学报,2013,47(9),92.
24 Chazelas C, Trelles J P, Choquet I, et al. Plasma Chemistry & Plasma Processing,2017,37(3),627.
25 Keith D’Sa, Rao L, Munz R J. Journal of Thermal Spray Technology,2008,17(4),574.
26 Trelles J P. Journal of Physics D Applied Physics,2013,46(25),255201.
27 Li H P, Chen X. Plasma Chemistry & Plasma Processing,2002,22(1),27.
28 Colombo V, Concetti A, Ghedini E, et al. IEEE Transactions on Plasma Science,2011,39(11),2894.
29 Shigeta M. Journal of Physics D Applied Physics,2013,46(46),5401.
30 Meillot E, Vincent S, Caruyer C, et al. Journal of Thermal Spray Technology,2009,18(5-6),875.
31 Alaya M, Chazelas C, Vardelle A. Journal of Thermal Spray Technology,2016,25(1-2),36.
32 Mentel J, Heberlein J. Journal of Physics D Applied Physics,2010,43(2),3002.
33 Semenov I L, Krivtsun I V, Reisgen U. Journal of Physics D Applied Physics,2016,49(10),5204.
34 Almeida N A, Cunha M D, Benilov M S. Journal of Physics D Applied Physics,2017,50(38),5203.
35 Chazelas C, Trelles J P, Vardelle A. Journal of Thermal Spray Technology,2017,26(1-2),3.
36 Zhou Q H. Numerical Simulation of Plasma Torch. Ph.D. Thesis, Fudan University, China,2009(in Chinese).
周前红.直流电弧等离子体炬的数值模拟.博士学位论文,复旦大学,2009.
37 Tan C, Wei Z Y, Wei P, et al. Journal of Xi’an Jiaotong University,2014,48(6),91(in Chinese).
谭超,魏正英,魏培,等.西安交通大学学报,2014,48(6),91.
38 Zhang N N, Lin D Y, Li Y L, et al. Journal of Iron and Steel Research(International),2017,24(3),306.
39 Ardkani E S. Numerical and Experimental Study of the Arc Fluctuations in a DC plasma Torch. Ph.D. Thesis, Toronto University, Canada,2016.
40 Shang S, Guduri B, Cybulsky M, et al. Journal of Physics D: Applied Physics,2014,47(40),5206.
41 Saito H, Nakane Y, Fujino T, et al. Journal of Fluid Science & Technology,2016,11(4),JFST0024.
42 Kanta A F, Planche M P, Montavon G, et al. Surface & Coatings Technology,2010,204(9),1542.
43 Zhang H, Hu S, Wang G. Surface & Coatings Technology,2006,201(3-4),886.
44 Wei P, Wei Z, Zhao G, et al. Heat & Mass Transfer,2016,52(9),1739.
45 Feng L J, Cao K B, Lei A L. Hot Working Technology,2006,35(11),46(in Chinese).
冯拉俊,曹凯博,雷阿利.热加工工艺,2006,35(11),46.
46 Tan C, Wei Z Y, Wei P, et al. Journal of Propulsion Technology,2016,37(5),930(in Chinese).
谭超,魏正英,魏培,等.推进技术,2016,37(5),930.
47 Zhang W, Zheng L L, Zhang H, et al. Plasma Chemistry & Plasma Processing,2007,27(6),701.
48 Chen D, Wang Y, Bai Y, et al. Journal of Inorganic Materials,2015,30(1),65.
陈丹,王玉,白宇,等.无机材料学报,2015,30(1),65.
49 Alavi S, Passandideh-Fard M, Mostaghimi J. Journal of Thermal Spray Technology,2012,21(6),1278.
50 Zhang Y, Xu J N, Han C C, et al. Materials Science and Engineering of Powder Metallurgy,2017,22(3),313(in Chinese).
张勇,徐建宁,韩成才,等.粉末冶金材料科学与工程,2017,22(3),313.
51 Zhang Y, Matthews S, Hyland M. Journal of Physics D Applied Physics,2017,50(27),5601.
52 Zhang Y, Matthews S, Hyland M. International Journal of Heat & Mass Transfer,2017,115,488.
53 Kang C W, Tan J K, Pan L, et al. Applied Surface Science,2011,257(24),10363.
54 El-Hadj A A, Zirari M, Bacha N. Applied Surface Science,2010,257(5),1643.
55 Zhang M Y, Zhang H, Zheng L L. International Journal of Heat & Mass Transfer,2008,51(13),3410.
56 Li B X, Li X H, Chen M. Physics of Fluids,2017,29(1),2003.
57 Danouni S, El-Hadj A A, Zirari M, et al. Applied Surface Science,2016,371,213.
58 Xiong H B, Zhu J. Journal of Hydrodynamics Ser B,2010,22(5),150.
59 Yokoi K. Soft Matter,2011,7(11),5120.
60 Tran A T T, Hyland M M. Journal of Thermal Spray Technology,2010,19(1-2),11.
61 Tabbara H, Gu S. International Journal of Heat & Mass Transfer,2012,55(7-8),2081.
62 Kumar A, Gu S, Tabbara H, et al. Surface & Coatings Technology,2013,220(15),164.
63 Zhang Y, Matthews S, Tran A T T, et al. Surface & Coatings Technology,2016,307,807.
64 Zirari A, El-Hadj A, Bacha N. Applied Surface Science,2010,256(11),3581.
65 Liu H, Jazi H R S, Bussmann M, et al. Acta Materialia,2009,57(20),6013.
66 Fukanuma H, Huang R, Tanaka Y, et al. Journal of Thermal Spray Technology,2009,18(5-6),965.
67 Zheng Y Z, Li Q, Zheng Z H, et al. Applied Surface Science,2014,317,526.
68 Xing Y, Jiang C, Hao J, et al. Reviews on Advanced Materials Science,2013,33,276.
69 Liao Y M, Zheng Y Z, Zheng Z H, et al. Applied Physics A,2016,122(7),654.
70 Zheng Z H, Li Q. Materials For Mechanical Engineering,2015,39(12),75(in Chinese).
郑振环,李强.机械工程材料,2015,39(12),75.
[1] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[2] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[3] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[4] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[5] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[6] 陈文龙, 刘敏, 张吉阜, 邓子谦, 肖晓玲, 唐维学. 等离子喷涂-物理气相沉积7YSZ热障涂层高温氧化过程中的阻抗谱分析[J]. 材料导报, 2019, 33(4): 605-606.
[7] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[8] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[9] 浦娟, 谢依汝, 胡庆贤, 胥国祥, 朱蔡琛. 单缆式焊丝GMAW电弧物理行为的数值模拟[J]. 材料导报, 2019, 33(4): 689-693.
[10] 代文杰,潘诗琰,申小平,徐驰,范沧. 介观尺度下液相烧结过程的数值模拟研究进展[J]. 材料导报, 2019, 33(17): 2929-2938.
[11] 魏岑,李向明. 一种不稳定的共晶生长方式:倾斜共晶生长的研究进展[J]. 材料导报, 2019, 33(15): 2532-2537.
[12] 陈守东. MCrAlY粘结层的微观组织及制备方法研究进展[J]. 材料导报, 2019, 33(15): 2582-2588.
[13] 李文旭,马昆林,龙广成,谢友均,马聪,李宁. 自密实混凝土拌合物稳定性动态监测及数值模拟研究进展[J]. 材料导报, 2019, 33(13): 2206-2213.
[14] 刘晓梅, 贺定勇, 周正, 王国红, 王曾洁, 吴旭. 微束等离子喷涂羟基磷灰石涂层相结构的微拉曼光谱研究[J]. 材料导报, 2019, 33(10): 1634-1639.
[15] 田捍卫, 王爱琴, 谢敬佩, 苌清华, 刘帅洋. 铜铝复合板铸轧工艺优化及实验分析[J]. 材料导报, 2019, 33(10): 1706-1711.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed