Please wait a minute...
材料导报  2020, Vol. 34 Issue (16): 16161-16166    https://doi.org/10.11896/cldb.19080047
  高分子与聚合物基复合材料 |
考虑界面的空心玻璃微珠/环氧树脂复合泡沫材料的力学性能仿真分析
余为, 张雄博
燕山大学河北省重型装备与大型结构力学可靠性重点实验室,秦皇岛 066004
Simulation and Analysis of Mechanical Properties of Hollow Glass Microspheres/Epoxy Syntactic Foams with Interface
YU Wei, ZHANG Xiongbo
Key Laboratory of Mechanical Reliability for Heavy Equipments and Large Structures of Hebei Province, Yanshan University, Qinhuangdao 066004, China
下载:  全 文 ( PDF ) ( 4877KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 建立了空心玻璃微珠随机分布的环氧树脂复合泡沫材料代表体元模型,采用内聚力单元模拟界面。研究了玻璃微珠相对壁厚、体积分数对复合泡沫材料应力-应变曲线和屈服强度的影响,分析了空心玻璃微珠相对壁厚不同时,复合材料中的应力分布差异;还研究了界面强度对复合泡沫材料强度和应力分布的影响。研究表明,考虑界面时的数值模拟结果与相关文献的实验数据较为符合。玻璃微珠相对壁厚存在一个约为0.06的临界值,当相对壁厚小于临界值时,复合材料的屈服强度随微珠含量增加而减小;反之,则随微珠含量增加而增加。微珠相对壁厚不同,复合材料中的应力分布差异较大。界面对复合材料强度和应力分布具有重要影响,复合材料屈服强度与弱界面含量基本呈线性相关,界面弱化会使得微珠周围基体的应力分布规律变化较大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余为
张雄博
关键词:  空心玻璃微珠  复合泡沫材料  界面  力学性能  数值模拟    
Abstract: The representative volume element (RVE) model of epoxy resin composites with random distribution of hollow glass microspheres was established. The cohesive element is used to model the behavior of interfaces in composites. The influence of the relative wall thickness and vo-lume fraction of the hollow glass microsphere on the stress-strain curves and yield strength of composites were studied by numerical simulation. The discrepancy of stress distribution in composite materials was analyzed when the relative wall thickness of glass microspheres was different. The effect of interface strength on the yield strength and stress distribution of composite foams was also investigated. The study shows that the numerical simulation results considering the interface are in good agreement with the experimental data in the relevant literature. The relative wall thickness of glass microspheres has a critical value about 0.06. When the relative wall thickness is less than the critical value, the yield strength values of composites decrease with the increase of microspheres content. On the contrary, it increases. The stress distribution in composites varies greatly with the relative wall thickness of microspheres. Interface plays an important role in the strength and stress distribution of composites. The yield strength of composites is linearly correlated with the content of weak interface. Weak interface makes the stress distribution of matrix around microspheres change greatly.
Key words:  hollow glass microsphere    syntactic foams    interface    mechanical properties    numerical simulation
               出版日期:  2020-08-25      发布日期:  2020-07-24
ZTFLH:  TB332  
通讯作者:  yuweichn@163.com   
作者简介:  余为,燕山大学,副教授。2011年毕业于燕山大学,获得力学博士学位。主要研究方向为轻质多孔复合泡沫材料的制备和力学性能。
引用本文:    
余为, 张雄博. 考虑界面的空心玻璃微珠/环氧树脂复合泡沫材料的力学性能仿真分析[J]. 材料导报, 2020, 34(16): 16161-16166.
YU Wei, ZHANG Xiongbo. Simulation and Analysis of Mechanical Properties of Hollow Glass Microspheres/Epoxy Syntactic Foams with Interface. Materials Reports, 2020, 34(16): 16161-16166.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080047  或          http://www.mater-rep.com/CN/Y2020/V34/I16/16161
1 Gupta N, Woldesenbet E, Mensah P. Composites Part A, 2004, 35(1), 103.
2 Lu Zixing. Advances in Mechanics, 2004(3), 341(in Chinese).
卢子兴. 力学进展, 2004(3), 341.
3 Dimchev M, Caeti R, Gupta N. Materials & Design, 2010, 31(3), 1332.
4 Lin Bilan, Lu Xinying, Chen Qin. Acta Materiae Compositae Sinica, 2011, 28(3), 6(in Chinese).
林碧兰,路新瀛,陈勤. 复合材料学报, 2011, 28(3), 6.
5 Gupta N, Woldesenbet E. Composite Structures, 2003, 61(4), 311.
6 Bardella L, Genna F. International Journal of Solids and Structures, 2001, 38(40-41), 7235.
7 Liang Xiaojie, Liang Ningning, Liang Zhongxu, et al. Engineering Plastics Application, 2015(2), 121(in Chinese).
梁小杰, 梁宁宁, 梁忠旭, 等. 工程塑料应用, 2015(2), 121.
8 Huang J S, Gibson L J. Journal of the Mechanics and Physics of Solids, 1993, 41(1), 55.
9 Bardella L, Genna F. International Journal of Solids and Structures, 2001, 38(40-41), 7235.
10 Wouterson E M, Boey F Y C, Hu X, et al. Composites Science and Technology, 2005, 65(11-12), 1840.
11 Lu Zixing, Shi Shanglu, Zou Bo, et al. Acta Metallurgica Sinica, 2005, 22(4), 17(in Chinese).
卢子兴, 石上路, 邹波, 等. 复合材料学报, 2005, 22(4), 17.
12 Lu Zixing, Zou Bo, Li Zhongming, et al. Acta Materiae Compositae Sinica, 2008, 25(6), 175(in Chinese).
卢子兴, 邹波, 李忠明, 等. 复合材料学报, 2008, 25(6), 175.
13 Yu Wei, Li Huijian, He Changjun, et al. Acta Materiae Compositae Sinica, 2010, 27(4), 189(in Chinese).
余为, 李慧剑, 何长军, 等. 复合材料学报, 2010, 27(4), 189.
14 Lin Xiangyang, Li Junyan, Mao Na, et al. Science & Technology in Chemical Industry, 2017, 25(2), 17(in Chinese).
吝向阳, 李俊燕, 毛娜, 等. 化工科技, 2017, 25(2), 17.
15 Wang Caihua, Li Huijian, Yu Wei, et al. Acta Materiae Compositae Sinica, 2018, 35(5), 1105(in Chinese).
王彩华, 李慧剑, 余为, 等. 复合材料学报, 2018, 35(5), 1105.
16 Nguyen N Q, Gupta N. Materials Science and Engineering: A, 2010, 527(23), 6422.
17 Aureli M, Porfiri M, Gupta N. Mechanics of Materials, 2010, 42(7), 726.
18 Antunes F V, Ferreira J A M, Capela C. Finite Elements in Analysis and Design, 2011, 47(2), 78.
19 Liang Xi, Li Huijian, Yu Wei, et al. Chinese Journal of Solid Mecha-nics, 2013, 34(1), 73(in Chinese).
梁希, 李慧剑, 余为, 等. 固体力学学报, 2013, 34(1), 73.
20 Wu Xinsen, Chen Xiangbao, Song Huancheng. Acta Materiae Compositae Sinica, 1985, 2(3), 41(in Chinese).
吴鑫森, 陈祥宝, 宋焕成. 复合材料学报, 1985, 2(3), 41.
21 Hashin Z. Journal of the Mechanics and Physics of Solids, 2002, 50(12), 2509.
22 Shen Min, Hao Pei. Acta Materiae Compositae Sinica, 2016, 33(1), 189(in Chinese).
沈珉, 郝培. 复合材料学报, 2016, 33(1), 189.
23 Lu Zixing. Chinese Journal of Solid Mechanics, 2015(S1), 85(in Chinese)
卢子兴. 固体力学学报, 2015(S1), 85.
24 Volokh K Y. Communications in Numerical Methods in Engineering, 2004, 20(11), 845.
25 Dimitri R, Trullo M, De Lorenzis L, et al. Engineering Fracture Mecha-nics, 2015, 148, 145.
26 Ye J, Chu C, Zhai Z, et al. Applied Sciences, 2017, 7(1), 102.
27 Shen Min, Liu He, Yu Jisong. Journal of Experimental Mechanics, 2018, 33(3), 395(in Chinese).
沈珉, 刘赫, 于济菘. 实验力学, 2018, 33(3), 395.
28 Alfano G. Composites Science and Technology, 2006, 66(6), 723.
29 Yu Ming, Zhu Ping, Ma Yingqi. Acta Materiae Compositae Sinica, 2013, 30(3), 225(in Chinese).
喻明, 朱平, 马颖琦. 复合材料学报, 2013, 30(3),225.
30 Cho Y J, Kang Y J, Lee Y C, et al. Materials, 2017, 10(8),911.
31 Brown J A, Carroll J D, Huddleston B, et al. Journal of Materials Science, 2018, 53(14),10479.
32 Nian G D, Shan Y J, Xu Q, et al. Composites Part B: Engineering, 2016, 89,18.
33 Huang R X, Li P F. Composites Part B: Engineering, 2015, 78,401.
[1] 齐通通, 郭杰, 王国伟, 郝瑞亭, 徐应强, 常发然. Sb浸润界面对InAs/InAsSb超晶格晶体结构和探测器性能的影响[J]. 材料导报, 2020, 34(Z1): 86-89.
[2] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[3] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[4] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[5] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[6] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[7] 宋文杰, 刘洁, 董会萍, 张光, 王彤. 超轻镁锂合金熔炼工艺研究[J]. 材料导报, 2020, 34(Z1): 316-321.
[8] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[9] 冉小杰, 周露, 黄福祥, 曾利娟. Cu/Al界面研究进展[J]. 材料导报, 2020, 34(Z1): 366-369.
[10] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[11] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[12] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[13] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[14] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[15] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed