Please wait a minute...
材料导报  2019, Vol. 33 Issue (8): 1367-1370    https://doi.org/10.11896/cldb.18050155
  金属与金属基复合材料 |
搅拌摩擦加工细晶TA2工业纯钛晶粒长大规律
陈琛辉1,2, 蒋璐瑶1,2, 刘成龙1,2, 黄伟九1,2, 郭勇义1,2, 胥桥梁1,2
1 重庆理工大学材料科学与工程学院,重庆 400054
2 重庆理工大学模具技术重庆市重点实验室,重庆 400054
Grain Growth Kinetics of Fine Grained TA2 Commercial Pure Titanium by Friction Stir Processing
CHEN Chenhui1,2, JIANG Luyao1,2, LIU Chenglong1,2, HUANG Weijiu1,2, GUO Yongyi1,2, XU Qiaoliang1,2
1 College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054
2 Chongqing Key Laboratory of Mold Technology, Chongqing University of Technology, Chongqing 400054
下载:  全 文 ( PDF ) ( 5983KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 TA2工业纯钛经过转速180 r/min、行进速度25 mm/min搅拌摩擦加工后发生剧烈塑性变形,获得晶粒尺寸均匀(平均晶粒尺寸为2 μm)的细晶组织。在500~600 ℃对搅拌摩擦加工细晶TA2工业纯钛进行不同时间的退火处理,利用场发射扫描电子显微镜进行组织观察及织构表征,计算晶粒生长指数和激活能,并建立数学模型,系统研究搅拌摩擦加工细晶TA2工业纯钛晶粒长大行为。研究结果表明,搅拌摩擦加工细晶TA2工业纯钛晶粒长大过程中织构具有稳定性,退火处理后晶粒c轴平行于加工方向。当退火温度为550 ℃时,部分晶粒优先长大,600 ℃受热下,晶粒快速长大。在500~600 ℃内,搅拌摩擦加工细晶TA2工业纯钛晶粒的生长指数为3,生长激活能为328.5 kJ/mol。研究表明,通过搅拌摩擦加工获得的细晶组织具有较好的晶粒稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈琛辉
蒋璐瑶
刘成龙
黄伟九
郭勇义
胥桥梁
关键词:  工业纯钛  搅拌摩擦加工  热处理  晶粒长大  织构    
Abstract: Fine grained TA2 commercial pure Ti was prepared by friction stir processing with 180 r/min and 25 mm/min. The average grain size of the processed TA2 alloy was 2 μm. Thermal stability and grain growth kinetics of fine grained TA2 alloy were studied. SEM images and EBSD results were used to analyze the microstructure and texture after annealing. The results showed that the texture of friction stir processed TA2 alloy was stable and c-axes were approximately parallel to processing direction after annealing treatment. Some grains preferentially grew up when the sample underwent heat treatment at 550 ℃. When the temperature reached 600 ℃, fine grains grew fast. When annealed between 500 ℃ to 600 ℃, the grain growth exponent and the activation energy were 3 and 328.5 kJ/mol, respectively. The microstructure and texture of fine grained TA2 prepared by friction stir processing could remain stable at 500 ℃.
Key words:  commercial pure Ti    friction stir processing    heat treatment    grain growth    texture
               出版日期:  2019-04-25      发布日期:  2019-04-28
ZTFLH:  TG166.5  
基金资助: 重庆市基础科学与前沿技术研究专项项目(cstc2015jcyjBX0048);重庆市社会事业与民生保障科技创新专项(cstc2017shmsA130047);国家“万人计划”科技创新领军人才项目
作者简介:  陈琛辉,硕士研究生,2016年9月就读于重庆理工大学材料科学与工程学院,主要的研究方向是材料强化、失效及保护。刘成龙,重庆理工大学,教授,硕士生导师。2006年1月毕业于大连理工大学,获材料学博士学位。Email: liuchenglong@cqut.edu.cn
引用本文:    
陈琛辉, 蒋璐瑶, 刘成龙, 黄伟九, 郭勇义, 胥桥梁. 搅拌摩擦加工细晶TA2工业纯钛晶粒长大规律[J]. 材料导报, 2019, 33(8): 1367-1370.
CHEN Chenhui, JIANG Luyao, LIU Chenglong, HUANG Weijiu, GUO Yongyi, XU Qiaoliang. Grain Growth Kinetics of Fine Grained TA2 Commercial Pure Titanium by Friction Stir Processing. Materials Reports, 2019, 33(8): 1367-1370.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050155  或          http://www.mater-rep.com/CN/Y2019/V33/I8/1367
1 Zhang X Y, Zhao Y Q, Bai C G. Tianium alloy and applications, Che-mical Industry Press, China, 2005(in Chinese).
张喜燕,赵永庆,白晨光.钛合金及应用,化学工业出版社, 2005.
2 Wu S, Fan K, Jiang P, et al. Materials Science and Engineering:A, 2010, 527(26), 6917.
3 Gao X, Zhang Z, Wang K S, et al. Materials Review A:Review Papers, 2014, 28(3), 138(in Chinese).
高雪,张郑,王快社,等. 材料导报:综述篇, 2014, 28(3), 138.
4 Weglowski M S. Archives of Civil and Mechanical Engineering, 2018, 18(1), 114.
5 Liu F C, Liao J, Gao Y, et al. Journal of Alloys and Compounds, 2015, 626, 304.
6 Lee W, Lee C, Chang W, et al. Materials Letters, 2005, 59(26), 3315.
7 Kim W J, Yoo S J, Jeong H T, et al. Scripta Materialia, 2011,64(1),49.
8 Lee D, Li C, Lee Y, et al. Thermochimica Acta, 2014, 586, 66.
9 Qiao Z, Liu X Y, Zhao X C, et al. Rare Metal Materials and Enginee-ring, 2017,46(9), 2618(in Chinese).
乔珍,刘晓燕,赵西成,等.稀有金属材料与工程, 2017,46(9), 2618.
10 Ghosh A, Gurao N P. Materials & Design, 2017, 115, 121.
11 Bozzolo N, Dewobroto N, Grosdidier T, et al. Materials Science and Engineering:A, 2005, 397(1-2), 346.
12 Hoseini M, Hamid Pourian M, Bridier F, et al. Materials Science and Engineering:A, 2012, 532, 58.
13 Burke J E, Turnbull D. Progress in Metal Physics, 1952, 3, 220.
14 Bhattacharyya J J, Agnew S R, Muralidharan G. Acta Materialia, 2015, 86, 80.
15 Roy I, Chauhan M, Lavernia E J, et al. Metallurgical and Materials Transactions A, 2006, 37A, 721.
16 Dhal A, Panigrahi S K, Shunmugam M S. Journal of Alloys and Compounds, 2015, 649, 229.
17 Wagner F, Bozzolo N, Van Landuyt O, et al. Acta Materialia, 2002, 50(5), 1245.
18 Chao Q, Hodgson P D, Beladi H. Materials Science and Engineering:A, 2017, 694, 13.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 郭建业, 赵英民, 张丽娟, 苏力军, 李文静, 杨洁颖. 高温可重复使用二氧化硅气凝胶复合材料性能研究[J]. 材料导报, 2019, 33(z1): 202-205.
[3] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[4] 王一唱, 曹玲飞, 吴晓东, 邹衍, 黄光杰. 石油钻杆用7xxx系铝合金微观组织和性能的研究进展[J]. 材料导报, 2019, 33(7): 1190-1197.
[5] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[6] 蒋波, 刘雅政, 周乐育, 张朝磊, 陈列, 王国存. 重型钎具用钢组织性能控制的研究现状[J]. 材料导报, 2019, 33(5): 854-861.
[7] 郑国明, 李磊, 毛小南, 蔡建华, 吴聪, 雷磊. 钛合金BCC↔HCP相变的变体选择及其对晶体取向的影响[J]. 材料导报, 2019, 33(17): 2910-2917.
[8] 熊斯, 唐鑫, 王春霞, 胡清华. 焊后热处理对Al-Mg-Zn(-Sc-Zr)合金焊丝焊接7075铝合金焊接接头组织和性能的影响[J]. 材料导报, 2019, 33(16): 2720-2724.
[9] 樊启哲, 廖春发, 陈鑫, 张志文, 余长林. 通过热处理调控光催化剂性质的研究进展[J]. 材料导报, 2019, 33(11): 1853-1859.
[10] 张振扬, 赵利忠, 张家胜, 钟喜春, 刘仲武. La2Fe14B和Ce2Fe14B合金在快淬和热处理过程中相析出行为的比较[J]. 《材料导报》期刊社, 2018, 32(8): 1271-1275.
[11] 张玉, 黄晓锋, 马颖, 闫峰云, 李元东, 郝远. 添加Sm对不同尺寸Mg-6Zn-0.4Zr镁合金坯料非枝晶组织演变的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1283-1288.
[12] 俞良良, 张郑, 王快社, 王文, 贾少伟. 搅拌摩擦加工对AZ31镁合金微观组织及力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1289-1293.
[13] 张建斌, 刘帆, 薛飞. 热处理工艺对P91耐热钢中δ-铁素体和冲击性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1318-1322.
[14] 何承绪, 杨富尧, 孟利, 刘洋, 高洁, 马光, 韩钰, 陈新. 薄规格取向硅钢中晶粒取向和尺寸对Goss晶粒异常长大的影响[J]. 《材料导报》期刊社, 2018, 32(4): 606-610.
[15] 李安敏,史君佐,谢明款. 高熵合金力学性能的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 461-466.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed