Please wait a minute...
材料导报  2020, Vol. 34 Issue (20): 20123-20129    https://doi.org/10.11896/cldb.19070069
  金属与金属基复合材料 |
FGH4096合金含高应变速率的流变行为和热加工图构建
刘松浩, 司家勇, 陈龙, 徐梦杰
中南林业科技大学机电工程学院, 长沙 410004
Flow Behavior and Processing Maps of FGH4096 Alloy Including High Strain Rate
LIU Songhao, SI Jiayong, CHEN Long, XU Mengjie
College of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
下载:  全 文 ( PDF ) ( 7566KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在变形温度为1 020~1 140 ℃、应变速率为0.001~10 s-1的条件下,采用热压缩实验研究了热等静压态FGH4096合金的热变形行为并建立了热加工图。在应变速率为0.001~1.0 s-1时,流变应力在达到峰值后开始减小。当应变速率为10 s-1时,合金的的真应力-真应变曲线剧烈下降,这与试样开裂有关。随着变形温度的降低或应变速率的提高,合金的流变应力增大。当应变速率在1.0 s-1以上时,由于流变应力迅速减小后又增大,合金的真应力-真应变曲线出现了双峰形态,这与高应变速率下滑移系开动和位错转变有关。真应变为0.3的热加工图中含有两个明显的动态再结晶区域,耗散率峰值位置分别为:(1)变形温度1 040 ℃、应变速率0.002 s-1,耗散率62%;(2)变形温度1 120 ℃、应变速率0.001 s-1,耗散率53%。当真应变为0.4时,该合金在变形温度1 050~1 105 ℃、应变速率高于0.2 s-1时存在流动失稳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘松浩
司家勇
陈龙
徐梦杰
关键词:  FGH4096合金  高应变速率  热压缩  本构模型  热加工图    
Abstract: The hot flow behavior and processing maps of hot isostatic pressed powder metallurgy FGH4096 superalloy were studied at the temperature range of 1 020—1 140 ℃ and strain rate range of 0.001—10 s-1. The flow stress decrease after the rapid peak strain points and then smoothly transfer to the steady state during the strain rates of 0.001—1.0 s-1. As for the strain rate of 10 s-1, it demonstrates no steady state and the curves drop down sharply, which corresponds with the cracks of specimens. It is found that the flow stresses increase with decreasing deformation temperature and increasing strain rate. Especially when strain rate is above 1.0 s-1, there are double summits of the flow stresses which are resulted in the slip system and dislocation transition at high stain rates. The processing maps with true strain 0.3 exhibit two peak positions of energy dissipation rate: (1) 1 040 ℃, 0.002 s-1, with an efficiency of 62%; (2)1 120 ℃, 0.001 s-1, with an efficiency of 53%. Plasti-city instability is anticipated while the strain rate is above 0.2 s-1 and the temperature range is 1 050—1 105 ℃ at true strain 0.4.
Key words:  FGH4096 superalloy    high strain rate    thermal compression    constitutive model    processing map
               出版日期:  2020-10-25      发布日期:  2020-11-06
ZTFLH:  V256  
基金资助: 湖南省教育厅重点研究项目(16A220);湖南省自然科学基金面上项目(2017JJ2403);湖南省高校科技创新团队支持计划项目(2014207);中南林业科技大学研究生科技创新基金(CX20192078)
通讯作者:  sjy98106@163.com   
作者简介:  刘松浩,现就读于中南林业科技大学,硕士研究生,主要研究粉末高温合金材料成形工艺、组织及性能。
司家勇,中南林业科技大学,教授。2009年毕业于钢铁研究总院,获得材料科学与工程博士学位。同年加入中南林业科技大学机电工程学院工作至今,主要从事高温合金材料成形工艺、组织及性能研究,重点研究先进航空发动机用粉末高温合金热加工成型过程的应力应变、数值模拟、显微组织及力学性能的分析以及应用。在国内外重要期刊发表文章30多篇,申报发明专利5项。
引用本文:    
刘松浩, 司家勇, 陈龙, 徐梦杰. FGH4096合金含高应变速率的流变行为和热加工图构建[J]. 材料导报, 2020, 34(20): 20123-20129.
LIU Songhao, SI Jiayong, CHEN Long, XU Mengjie. Flow Behavior and Processing Maps of FGH4096 Alloy Including High Strain Rate. Materials Reports, 2020, 34(20): 20123-20129.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070069  或          http://www.mater-rep.com/CN/Y2020/V34/I20/20123
1 Viswanathan G B, Sarosi P M, Whitia D H, et al. Materials Science and Engineering: A, 2005, 400-401, 489.
2 Wang S Y, Fang S, Shi Z S, et al. The International Journal of Advanced Manufacturing Technology, 2017, 88, 2661.
3 Prasad Y V R K. Journal of Materials Engineering and Performance, 2003, 12(6), 638.
4 Ning Y Q, Yao Z K, Guo H Z, et al. Materials Science and Engineering: A, 2010, 527(26), 6794.
5 Ning Y Q, Yao Z K, Li H, et al. Materials Science and Engineering: A, 2010, 527(4-5), 961.
6 Ning Y Q, Yao Z K, Fu M W, et al. Materials Science and Engineering: A, 2010, 527(26), 6968.
7 Liu J T, Zhang Y W, Tao Y, et al. Transactions of Materials and Heat Treatment, 2006, 7(5), 46(in Chinese).
刘建涛, 张义文, 陶宇, 等. 材料热处理学报, 2006, 7(5), 46.
8 Xu W, Zhang L W, Gu S D, et al. Transactions of Nonferrous Metals Society of China, 2012, 22(1), 66.
9 Zhang M J, Li F G, Wang S Y, et al. Materials Science and Enginee-ring: A, 2011, 528(12), 4030.
10 Zou J W, Wang W X. Journal of Aeronautical Materials, 2006, 26(3), 244(in Chinese).
邹金文, 汪武祥. 航空材料学报, 2006, 26(3), 244.
11 Zhang Y W, Hu B F. Acta Metallurgica Sinica, 2016, 52(4), 445(in Chinese).
张义文, 胡本芙. 金属学报, 2016, 52(4), 445.
12 Guo W M, Dong J X, Wu J T, et al. Journal of Iron and Steel Research, 2005, 17(1), 59(in Chinese).
国为民, 董建新, 吴剑涛, 等. 钢铁研究学报, 2005, 17(1), 59.
13 Ouyang D L, Lu S Q, Cui X, et al. Rare Metal Materials and Enginee-ring, 2011, 40(2), 325(in Chinese).
欧阳德来, 鲁世强, 崔霞, 等. 稀有金属材料与工程, 2011, 40(2), 325.
14 Liu C K, Wei Z W, Zhang J Q, et al. Journal of Aeronautical Materials, 2018, 38(3), 40(in Chinese).
刘昌奎, 魏振伟, 张佳庆, 等. 航空材料学报, 2018, 38(3), 40.
15 Yang J, Wan X F, Ji C B, et al. Journal of Aeronautical Materials, 2014, 34(5), 7(in Chinese).
杨杰, 王晓峰, 吉传波, 等. 航空材料学报, 2014, 34(5), 7.
16 Guo H G, Wang Y, Li Y. Hot Working Technology, 2013, 42(24), 51(in Chinese).
郭宏钢, 王岩, 李阳. 热加工工艺, 2013, 42(24), 51.
17 Wang Y, Xu F H, Zeng L H, et al. Journal of Materials Engineering, 2018, 46(7), 100(in Chinese).
王岩, 徐芳泓, 曾莉, 等. 材料工程, 2018, 46(7), 100.
18 Raj R. Metallurgical Transactions A, 1981,12 (6), 1089.
19 MonajatI H, Taheri A K, Jahazi M, et al. Metallurgical and Materials Transactions A, 2005, 36(4), 895.
20 Xie X H, Yao Z K, Ning Y Q, et al. Journal of Aeronautical Materials, 2011, 31(1), 20(in Chinese).
谢兴华, 姚泽坤, 宁永权, 等. 航空材料学报, 2011, 31(1), 20.
21 Yang C, Liu X T, Si J Y, et al. The Chinese Journal of Nonferrous Metals, 2015, 25(10), 2707(in Chinese).
杨川, 刘小涛, 司家勇, 等. 中国有色金属学报, 2015, 25(10), 2707.
22 Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Metallurgical Tran-sactions A, 1984, 15(10), 1883.
23 Prasad Y V R K, Seshacharyulu T. International Materials Reviews, 1998, 43, 243.
24 Prasad Y V R K, Gegel H L. Metallurgical Transactions A, 1984, 15(10), 1883.
25 Chakravartty J K, Dey G K, Banerjee S, et al. Materials Science and Technology, 1996, 12(9), 705.
26 Si J Y, Gao F, Zhang J. Forging and Stamping Technology, 2010, 35(6), 112(in Chinese).
司家勇, 高帆, 张继. 锻压技术, 2010, 35(6), 112.
27 Liu X, Zhou Y, Zhu X J, et al. Materials Science and Engineering A, 2019, 746(11), 322.
28 Sun W, Qiu X, Guo J, et al. Materials and Design, 2015, 69, 70.
29 Mirzadeh H. Materials Chemistry and Physics, 2015, 152, 123.
30 Ning Y Q, Yao Z K, Yue T W, et al. Rare Metal Materials and Engineering, 2009, 38(10), 1783(in Chinese).
宁永权, 姚泽坤, 岳太文, 等. 稀有金属材料与工程, 2009, 38(10), 1783.
31 Jia D, Sun W R, Xu D S, et al. Journal of Materials Science and Technology, 2019, 35(9), 1851.
[1] 任军帅, 李欣琳, 肖松涛, 周立鹏, 舒滢, 张英明. 新型Ti-Al-Zr-Nb-Mo-Si钛合金热变形行为及基于BP神经网络模型的本构关系研究[J]. 材料导报, 2020, 34(Z1): 283-288.
[2] 仇鹏, 王家毅, 段晓鸽, 蔺宏涛, 陈康, 江海涛. AA7021铝合金热变形行为及微观组织演变机理的研究[J]. 材料导报, 2020, 34(8): 8106-8112.
[3] 吕鹏, 陈亚楠, 关庆丰, 李姚君, 许亮, 丁佐军. 新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为[J]. 材料导报, 2020, 34(4): 4113-4117.
[4] 王颂博, 李全安, 陈晓亚, 朱利敏, 张帅, 关海昆. Mg-11Gd-3Y-1.1Zn-0.5Zr的高温热压缩行为及热加工图[J]. 材料导报, 2020, 34(18): 18104-18108.
[5] 肖阳, 秦海勤, 徐可君. 基于Bodner-Partom理论的FGH96合金本构建模研究[J]. 材料导报, 2020, 34(16): 16125-16130.
[6] 刘博, 王社良, 李彬彬, 杨涛, 李昊, 刘洋, 何露. 一种考虑应变幅值和应变速率影响的超弹性SMA宏观唯象本构模型[J]. 材料导报, 2020, 34(14): 14161-14167.
[7] 谢誉璐, 黄光胜, 刘帅帅, 张军磊, 潘复生. 微量Ca元素对AZ31镁合金热变形行为的影响[J]. 材料导报, 2020, 34(12): 12070-12075.
[8] 胡余生, 冯迪, 周建党, 朱田, 张豪, 张捷, 范曦, 宋飞刀. 喷射成形AlSi25Cu4Mg耐磨合金的本构方程及热加工图[J]. 材料导报, 2020, 34(10): 10120-10125.
[9] 王朝阳, 周全, 杨鸥, 霍静思, 王海涛. 钢筋锈蚀率对钢筋与混凝土黏结性能的影响[J]. 材料导报, 2019, 33(Z2): 309-316.
[10] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[11] 朱利敏, 李全安, 陈晓亚, 张清, 王颂博, 张帅. Mg-8Gd-0.5Zr合金热压缩过程中动态再结晶行为[J]. 材料导报, 2019, 33(24): 4117-4121.
[12] 乔巍, 姚卫星, 马铭泽. 复合材料残余应力和固化变形数值模拟及本构模型评价[J]. 材料导报, 2019, 33(24): 4193-4198.
[13] 王林峰,曾韬睿,翁其能. 基于统计损伤理论的饱和细粒砂岩本构模型研究[J]. 材料导报, 2019, 33(22): 3727-3731.
[14] 崔涛, 何浩祥, 闫维明, 钱增志, 周大兴. 混杂纤维水泥基复合材料受压损伤本构模型及试验验证[J]. 材料导报, 2019, 33(20): 3413-3418.
[15] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed