Please wait a minute...
材料导报  2020, Vol. 34 Issue (10): 10120-10125    https://doi.org/10.11896/cldb.19050217
  金属与金属基复合材料 |
喷射成形AlSi25Cu4Mg耐磨合金的本构方程及热加工图
胡余生1,2, 冯迪3, 周建党4, 朱田3, 张豪4, 张捷4, 范曦4, 宋飞刀4
1 空调设备及系统运行节能国家重点实验室,珠海 519070
2 珠海格力电器股份有限公司,珠海 519000
3 江苏科技大学材料科学与工程学院,镇江 212003
4 江苏豪然喷射成形合金有限公司,镇江 212003
Constitutive Equation and Thermal Processing Map of Spray Formed AlSi25Cu4Mg Wear Resistant Alloy
HU Yusheng1,2, FENG Di3, ZHOU Jiandang4, ZHU Tian3, ZHANG Hao4, ZHANG Jie4, FAN Xi4, SONG Feidao4
1 State Key Laboratory of Air-conditioning Equipment and System Energy Conservation, Zhuhai 519070, China
2 Gree Electric Appliances,Inc.of Zhuhai, Zhuhai 519000, China
3 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
4 Jiangsu Haoran Spray Forming Alloy Co, Zhenjiang 212003, China
下载:  全 文 ( PDF ) ( 4949KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用Gleeble-3500热模拟试验机,研究了喷射成形AlSi25Cu4Mg(质量分数,%)耐磨合金在623~723 K和 0.001~5 s-1条件下的热变形行为,建立了带Zener-Hollomon参数(Z参数)的本构方程及热加工图。结果表明:喷射成形超高Si铝合金的热变形激活能为194.8 kJ/mol,其流变应力随变形温度的降低和应变速率的提高(即Z参数增大)而增大。热加工图表明,该合金在低Z参数值下的功率耗散程度可达31%,表现出较高程度的动态软化。喷射成形AlSi25Cu4Mg合金在713~723 K温度范围以及应变速率小于1 s-1条件下的热挤压试验中表现出良好的变形能力。经热处理强化后,合金沿挤压方向的抗拉强度为487 MPa,硬度可达187HV,满足实际性能需求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡余生
冯迪
周建党
朱田
张豪
张捷
范曦
宋飞刀
关键词:  喷射成形  AlSi25Cu4Mg合金  本构方程  热加工图    
Abstract: The hot deformation behavior of a spray formed AlSi25Cu4Mg wear resistant alloy were investigated using Gleeble-3500 test machine at 623—723 K with strain rates from 0.001 s-1 to 5 s-1, and the constitutive equation including Zener-Hollomon parameter (Z parameter) and processing map were established. Results revealed that the activation energy of the spray formed high Si content aluminum alloy was 194.8 kJ/mol, the flow stress rises with the decreasing of deformation temperature and the increase of strain rate. Processing map exhibited a high power dissipation degree of 31%, which indicates a high dynamic soften degree when the alloy deformed with low Z parameter values. The spray formed AlSi25Cu4Mg alloy showed an excellent deformation ability during hot extrution with the temperature range of 713—723 K and the strain rate below 1 s-1. After aging, the tensile strength along extrusion direction of thealloy was 487 MPa. The hardness has reached to 187HV, which satisfies the property requirement.
Key words:  spray forming    AlSi25Cu4Mg alloy    constitutive equation    thermal processing map
                    发布日期:  2020-04-26
ZTFLH:  TG146.2  
基金资助: 空调设备及系统运行节能国家重点实验室开放基金项目(ACSKL2018KT15),国家自然科学基金青年基金(51801082),江苏省自然科学基金项目(BK20160560)
通讯作者:  冯迪,2014年12月博士毕业于中南大学材料科学与工程学院。现为江苏科技大学副教授,主要从事高性能铝合金的理论和应用研究。difeng1984@just.edu.cn   
作者简介:  胡余生,男,教授级高级工程师,主要从事压缩机、电机和装备技术研究工作。
引用本文:    
胡余生, 冯迪, 周建党, 朱田, 张豪, 张捷, 范曦, 宋飞刀. 喷射成形AlSi25Cu4Mg耐磨合金的本构方程及热加工图[J]. 材料导报, 2020, 34(10): 10120-10125.
HU Yusheng, FENG Di, ZHOU Jiandang, ZHU Tian, ZHANG Hao, ZHANG Jie, FAN Xi, SONG Feidao. Constitutive Equation and Thermal Processing Map of Spray Formed AlSi25Cu4Mg Wear Resistant Alloy. Materials Reports, 2020, 34(10): 10120-10125.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050217  或          http://www.mater-rep.com/CN/Y2020/V34/I10/10120
1 Gan W P, Liu H, Yang F L.Materials Review, 2006, 20(3), 126(in Chinese).
甘卫平, 刘泓, 杨伏良. 材料导报, 2006, 20(3), 126.
2 Choi S W, Cho H S, Kumai S.Journal of Alloys and Compounds, 2016, 655, 6.
3 Lin G Y, Lei Y X, Guo D Q, et al.The Chinese Journal of Nonferrous Metals, 2014,24(3), 584(in Chinese).
林高用, 雷玉霞, 郭道强, 等. 中国有色金属学报, 2014, 24(3), 584.
4 Li P W, Li H Z, Liang X P, et al. Materials Science & Engineering A, 2018,732, 341.
5 Yu H, Cheng R F, Hang X M, et al.Transactions of Materials and Heat Treatment, 2012, 33(12), 58(in Chinese).
于浩, 程如法, 黄笑梅,等. 材料热处理学报, 2012, 33(12),58(in Chinese).
6 Li Y Z, Du X F, Sun J. Materials Science and Engineering of Powder Metallurgy, 2015, 20(3), 331(in Chinese).
李永志, 都学飞, 孙静. 粉末冶金材料科学与工程, 2015, 20(3),331.
7 Su J H. Study on microstructure and properties of high performance hype-reutectic Al-Si-Cu-Mg alloy. Master's Thesis, Shenyang University of Technology, China, 2017(in Chinese).
孙继鸿. 高性能过共晶Al-Si-Cu-Mg合金组织与性能的研究. 硕士学位论文, 沈阳工业大学, 2017.
8 Pan Y P. The study of high strength and toughness Al-Si-Cu-Mg cast alloys on microstructures and mechanical properties. Master's Thesis, Ge-neral Research Institute for Nonferrous Metals, China, 2015(in Chinese).
潘彦鹏. 高强韧铸造Al-Si-Cu-Mg合金组织性能研究. 硕士学位论文, 北京有色金属研究总院, 2015.
9 Zhu Q. Heat treatment process and strengthening mechanism of semi-solid cast Al-Si-Cu-Mg aluminum alloys. Master's Thesis, General Research Institute for Nonferrous Metals, China, 2017(in Chinese).
朱强. 半固态铸造Al-Si-Cu-Mg合金热处理工艺及强化机理研究. 硕士学位论文, 北京有色金属研究总院, 2017.
10 Shi Y J. Study on heat treatment process of semi-solid forming hypereutectic Al-Si-Cu-Mg Alloy. Master's Thesis, Shenyang University of Techno-logy, China, 2018(in Chinese).
史原脊. 半固态成形过共晶Al-Si-Cu-Mg合金热处理工艺研究. 硕士学位论文, 沈阳工业大学, 2018.
11 Yan S F. Study on semi-solid deforming characteristic and forming process of Al-Si-Cu-Mg Alloy. Master's Thesis, Inner Mongolia University of Technology, China, 2005(in Chinese).
闫淑芳. Al-Si-Cu-Mg合金半固态变形特征及成形模拟的研究. 硕士学位论文, 内蒙古工业大学, 2005.
12 Zhen Z S, Zhao A M, Mao W M, et al. The Chinese Journal of Nonferrous Metals, 2000, 10(6), 815(in Chinese).
甄子胜, 赵爱民, 毛卫民, 等. 中国有色金属学报, 2000, 10(6), 815.
13 Zhu Q L. Microstructure evolvement and mechanics behavior of high silicon aluminum alloys prepared by spray deposition. Master's Thesis, Harbin Institute of Technology, China, 2006(in Chinese).
朱奇林. 喷射成形高硅铝合金的组织演变和力学行为. 硕士学位论文, 哈尔滨工业大学, 2006.
14 Fu D F. The process and mechanical properties of high silicon-content aluminum alloy by multi-layer spray deposition technology. Master's Thesis, Central South University, China, 2001(in Chinese).
傅定发.多层喷射沉积高硅铝合金工艺及性能研究. 硕士学位论文, 中南大学, 2001.
15 Sun X B. Study on microstructure and mechanical properties of spray deposited high silicon aluminum alloy. Master's Thesis, Harbin Institute of Technology, China, 2011(in Chinese).
孙晓兵. 喷射成形高硅铝合金组织及性能研究. 硕士学位论文, 哈尔滨工业大学, 2011.
16 Feng D, Zhang X M, Liu S D. Rare Metal Materials and Engineering, 2016, 45(8), 2104(in Chinese).
冯迪, 张新明, 刘胜胆, 等. 稀有金属材料与工程, 2016, 45(8), 2104.
17 Feng D, Wang G Y, Chen H M, et al.Metal and Materials International, 2018, 24(1), 195.
18 Shaha S K, Czerwinski F, Kasprzak W, et al.Materials Science & Engineering A, 2016, 657, 441.
[1] 仇鹏, 王家毅, 段晓鸽, 蔺宏涛, 陈康, 江海涛. AA7021铝合金热变形行为及微观组织演变机理的研究[J]. 材料导报, 2020, 34(8): 8106-8112.
[2] 吕鹏, 陈亚楠, 关庆丰, 李姚君, 许亮, 丁佐军. 新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为[J]. 材料导报, 2020, 34(4): 4113-4117.
[3] 高志玉, 盛凯, 康宇, 张旭, 潘涛. 一种新型高淬透性Ni-Cr-Mo-B钢的热变形本构分析[J]. 材料导报, 2019, 33(4): 694-698.
[4] 卢林, 吴文恒, 龙倩蕾, 张亮, 张济山. 喷射成形工艺参数对沉积坯质量的影响[J]. 材料导报, 2019, 33(3): 390-394.
[5] 夏雨, 王快社, 胡平, 胡卜亮, 李世磊, 陈文静, 周宇航, 冯鹏发. 纯钼金属高温塑性变形行为研究进展[J]. 材料导报, 2019, 33(19): 3277-3289.
[6] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[7] 陈龙, 司家勇, 刘松浩, 廖凯. 挤压态FGH4096合金的热变形行为及热加工图[J]. 材料导报, 2019, 33(12): 2047-2054.
[8] 薛克敏, 薄冬青, 李萍. 轧制态7A60铝合金的热压缩显微组织及流变行为[J]. 《材料导报》期刊社, 2018, 32(8): 1306-1310.
[9] 刘贤翠, 潘冶, 陆韬, 唐智骄, 何为桥. 3003铝合金蠕变行为与本构方程[J]. 材料导报, 2018, 32(6): 1015-1019.
[10] 袁战伟, 李付国, 王春伟, 王瑜, 郭亚杰, 周亮. 基于Murty准则的SiCp/Al复合材料热加工图研究[J]. 《材料导报》期刊社, 2018, 32(4): 657-661.
[11] 吴萍萍, 张静静. 镁基复合材料高温变形研究进展[J]. 材料导报, 2018, 32(17): 3041-3050.
[12] 赵正阳, 孙明月, 孙建亮. 含稀土H13钢热变形行为及热加工图研究*[J]. CLDB, 2017, 31(8): 149-155.
[13] 常若寒, 蔡中义, 程丽任, 车朝杰, 迟佳轩. 基于遗传BP网络的Mg-Sm-Zn-Zr合金应力预测模型及加工图[J]. 《材料导报》期刊社, 2017, 31(6): 136-139.
[14] 孙倩,陈冷. Cu-3.0Ni-0.64Si合金的热变形行为[J]. 材料导报编辑部, 2017, 31(22): 90-94.
[15] 陈自鹏, 石少卿, 罗伟铭, 孙建虎, 范兰心. 高密度聚乙烯材料在大变形条件下的数值模拟研究*[J]. 《材料导报》期刊社, 2017, 31(20): 135-139.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed