Please wait a minute...
材料导报  2020, Vol. 34 Issue (20): 20118-20122    https://doi.org/10.11896/cldb.19060104
  金属与金属基复合材料 |
铬钼高温铁素体钢的形变特性与动态再结晶模型
罗锐1, 陈乐利1, 曹赟1, 周皓天1, 崔树刚1, 韩敏2, 裴昌磊3, 程晓农1, 高佩2
1 江苏大学材料科学与工程学院,镇江 212013
2 江苏银环精密钢管有限公司,宜兴 214203
3 江苏大学机械工程学院,镇江 212013
Deformation Characteristics and Dynamic Recrystallization Model of Cr-Mo High Temperature Ferritic Steel
LUO Rui1, CHEN Leli1, CAO Yun1, ZHOU Haotian1, CUI Shugang1, HAN Min2, PEI Changlei3, CHENG Xiaonong1, GAO Pei2
1 School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
2 Jiangsu Yinhuan Precision Steel Pipe Co., Ltd., Yixing 214203, China
3 School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
下载:  全 文 ( PDF ) ( 3132KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用先进的Gleeble热模拟技术对铬钼高温铁素体钢12CrMoG进行了950~1 150 ℃、0.001~10 s-1的热压缩试验,系统研究了其形变特性与动态再结晶行为。实验结果表明:高温低应变速率下的流变曲线呈现明显的动态再结晶行为;构建了应变量为0.2的高温本构模型,热变形激活能为384.54 kJ·mol-1,表明12CrMoG钢具有优良的热加工性能;构建了不同应变量下的热加工图,结合微观组织分析,避开了热加工失稳区间并明确了不同应变量下的最佳热加工窗口;基于Avrami方程构建了临界动态再结晶模型及体积分数模型,确定了临界应力与峰值应力的线性关系,预测了高温形变过程中的动态再结晶行为。本研究为铬钼高温铁素体钢12CrMoG的实际热加工工艺及其工程应用提供了科学的指导与依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗锐
陈乐利
曹赟
周皓天
崔树刚
韩敏
裴昌磊
程晓农
高佩
关键词:  12CrMoG钢  本构方程  加工图  变形组织  动态再结晶    
Abstract: Advanced Gleeble thermal simulation technology was used to carry out the hot compression tests of Cr-Mo high temperature ferritic steel 12CrMoG at 950—1 150 ℃ and 0.001—10 s-1. The deformation characteristics and dynamic recrystallization behaviour of the steel were systematically studied. The experimental results show that the flow curves have an obvious trend of dynamic recrystallization at high temperature and low strain rate; the constitutive model with strain of 0.2 was constructed, and the activation energy of hot deformation is 384.54 kJ·mol-1, which indicates that 12CrMoG steel has excellent hot working performance; the hot processing maps at different strains were constructed. Combining the microstructure analysis, the flow instability zone of hot deformation was avoided and the optimum hot working windows under different strains were defined. The critical dynamic recrystallization model and volume fraction model were constructed based on the Avrami equation. The linear relationship between critical stress and peak stress was determined, and the dynamic recrystallization behaviour during high temperature deformation was predicted. This study provides scientific guidance for practical hot working process and engineering application of 12CrMoG high temperature ferrite steel.
Key words:  12CrMoG steel    constitutive model    processing map    deformation microstructure    dynamic recrystallization
               出版日期:  2020-10-25      发布日期:  2020-11-06
ZTFLH:  TG142.1  
基金资助: 江苏省高等学校自然科学研究面上项目(19KJB430001);江苏省重点研发计划(产业前瞻与共性关键技术)(BE2017127);中国博士后科学基金(2019M661738);国家自然科学基金(51771082)
通讯作者:  luoruiweiyi@163.com   
作者简介:  罗锐,2016年12月毕业于江苏大学,获得工学博士学位。2018年11月至2019年2月在日本东北大学金属材料研究所访学,现于江苏大学任硕士研究生导师,主要从事高端金属结构材料的热加工性能研究。
引用本文:    
罗锐, 陈乐利, 曹赟, 周皓天, 崔树刚, 韩敏, 裴昌磊, 程晓农, 高佩. 铬钼高温铁素体钢的形变特性与动态再结晶模型[J]. 材料导报, 2020, 34(20): 20118-20122.
LUO Rui, CHEN Leli, CAO Yun, ZHOU Haotian, CUI Shugang, HAN Min, PEI Changlei, CHENG Xiaonong, GAO Pei. Deformation Characteristics and Dynamic Recrystallization Model of Cr-Mo High Temperature Ferritic Steel. Materials Reports, 2020, 34(20): 20118-20122.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060104  或          http://www.mater-rep.com/CN/Y2020/V34/I20/20118
1 Han B L. Study on microstructure and properties of T22/800H joints by TIG welding. Master’s Thesis, Jiangsu University, China, 2017(in Chinese).
韩秉霖. T22/800H异质TIG焊接接头组织和性能的研究.硕士学位论文, 江苏大学,2017.
2 Deng P A. Development of T22 alloy high pressure boiler tube. Master’s Thesis, Central South University, China, 2006(in Chinese).
邓丕安. T22合金高压锅炉管的研制. 硕士学位论文, 中南大学, 2006.
3 Li X Y. Study on mechanism of pulling concave of seamless steel tube push bench process of T22 steel. Master’s Thesis, Anhui University of Technology, China, 2018(in Chinese).
李修叶. T22钢无缝钢管顶管过程拉凹机理研究. 硕士学位论文, 安徽工业大学,2018.
4 Aumpava K, Kittichai F. Science Direct, 2018, 5, 9244.
5 Niraj B, Harpreet S, Satya P. Applied Surface Science, 2009, 255, 6862.
6 Khushdeep G, Hazoor S, Rakesh B. International Journal of Minerals Metallurgy and Materials, 2019, 26(3), 337.
7 Rutash M, Buta S S. Transactions of the Indian Institute of Metals, 2018, 71(8), 1985.
8 Natarajan S, Kumaresh B S P. Materials Science and Engineering A, 2006, 432, 47.
9 Ravindra K, Tewari V K, Satya P. Journal of Materials Engineering and Performance, 2009, 18(7), 959.
10 Zhu Z L, Khan H I, Cao Q, et al. High Temperature Material Processes, 2019, 38, 476.
11 Luo R. The design and fabrication of a new austenitic heat-resisting alloy, and its workability and deformation mechanism. Ph.D. Thesis, Jiangsu University, China, 2016(in Chinese).
罗锐. 新型奥氏体耐热合金的设计、制备及其热变形行为与机理研究.博士学位论文, 江苏大学, 2016.
12 Liu G W, Han Y, Shi Z Q, et al. Materials and Design, 2014,53, 662.
13 Wu H, Wen S P, Huang H, et al. Journal of Alloys and Compounds, 2016, 685, 869.
14 He G A, Liu F, Si J Y, et al. Materials and Design, 2015, 87, 256.
15 Dharmendra C, Rao K P, Zhao N F, et al. Materials Science and Engineering A, 2014, 606, 11
16 Ebrahimia G R, Keshmiria H, Momenib A, et al. Materials Science and Engineering A, 2011,528, 7488.
17 Luo R, Cheng X N, Xu G F, et al. Chinese Journal of Rare Metals, 2017, 41(2), 132(in Chinese).
罗锐,程晓农,徐桂芳,等. 稀有金属,2017, 41(2), 132.
18 Wusatowska-Sarnek A M, Miura H, Sakai T. Materials Science and Engineering A, 2002,323, 177.
19 Luo R, Zheng Q, Tang Z D, et al. High Temperature Material Processes, 2017, 36(5), 467.
20 Rezaei A H R, Shahsvari P. Journal of Alloy and Compounds, 2016, 687, 263.
21 Satheesh K S S, Raghu T, Bhattacharjee P P, et al. Journal of Alloy and Compounds, 2016, 681, 28.
22 Sun F, Zhang J X. Transactions of Materials and Heat Treatment, 2011, 32(10), 1(in Chinese).
孙飞,张建新.材料热处理学报,2011, 32(10), 1.
23 Xi T, Yang C G, Shahzad M B, et al. Materials and Design, 2015, 87, 303.
24 Ryan N D, Mcqueen H J. Journal of Materials Processing Technology, 1990, 21, 177.
25 Cao Y, Di H S, Zhang J C, et al. Acta Metallurgica Sinica, 2012, 48(10), 1175.
26 Han Y, Yan S, Yin B G. Vacuum, 2018, 148, 78.
27 Zhang C, Zhang L W, Shen W F, et al. Materials & Design, 2016, 90, 804.
28 Wei H L, Liu G Q, Xiao X. Materials Science and Engineering A, 2013, 573, 215.
29 Cao F R, Xia F, Xue G Q. Materials & Design, 2016, 92,44.
[1] 任军帅, 李欣琳, 肖松涛, 周立鹏, 舒滢, 张英明. 新型Ti-Al-Zr-Nb-Mo-Si钛合金热变形行为及基于BP神经网络模型的本构关系研究[J]. 材料导报, 2020, 34(Z1): 283-288.
[2] 仇鹏, 王家毅, 段晓鸽, 蔺宏涛, 陈康, 江海涛. AA7021铝合金热变形行为及微观组织演变机理的研究[J]. 材料导报, 2020, 34(8): 8106-8112.
[3] 韩丽青, 吴云胜, 刘状, 秦学智, 王常帅, 周兰章, 于宏, 陈亚军. 一种先进超超临界火电机组用Ni-Fe-Cr基高温合金的热变形行为[J]. 材料导报, 2020, 34(6): 6109-6113.
[4] 吕鹏, 陈亚楠, 关庆丰, 李姚君, 许亮, 丁佐军. 新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为[J]. 材料导报, 2020, 34(4): 4113-4117.
[5] 刘松浩, 司家勇, 陈龙, 徐梦杰. FGH4096合金含高应变速率的流变行为和热加工图构建[J]. 材料导报, 2020, 34(20): 20123-20129.
[6] 王颂博, 李全安, 陈晓亚, 朱利敏, 张帅, 关海昆. Mg-11Gd-3Y-1.1Zn-0.5Zr的高温热压缩行为及热加工图[J]. 材料导报, 2020, 34(18): 18104-18108.
[7] 谢誉璐, 黄光胜, 刘帅帅, 张军磊, 潘复生. 微量Ca元素对AZ31镁合金热变形行为的影响[J]. 材料导报, 2020, 34(12): 12070-12075.
[8] 胡余生, 冯迪, 周建党, 朱田, 张豪, 张捷, 范曦, 宋飞刀. 喷射成形AlSi25Cu4Mg耐磨合金的本构方程及热加工图[J]. 材料导报, 2020, 34(10): 10120-10125.
[9] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[10] 高志玉, 盛凯, 康宇, 张旭, 潘涛. 一种新型高淬透性Ni-Cr-Mo-B钢的热变形本构分析[J]. 材料导报, 2019, 33(4): 694-698.
[11] 朱利敏, 李全安, 陈晓亚, 张清, 王颂博, 张帅. Mg-8Gd-0.5Zr合金热压缩过程中动态再结晶行为[J]. 材料导报, 2019, 33(24): 4117-4121.
[12] 夏雨, 王快社, 胡平, 胡卜亮, 李世磊, 陈文静, 周宇航, 冯鹏发. 纯钼金属高温塑性变形行为研究进展[J]. 材料导报, 2019, 33(19): 3277-3289.
[13] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[14] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[15] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed