Please wait a minute...
材料导报  2021, Vol. 35 Issue (16): 16138-16143    https://doi.org/10.11896/cldb.20070143
  金属与金属基复合材料 |
基于形貌的结构钢锈蚀评价指标及提取方法
王友德1,2, 史涛1, 夏敏1, 徐善华1
1 工程结构安全与耐久重点实验室/西安建筑科技大学,西安 710055;
2 博士后创新基地/西安建筑科技大学与陕西有色建设有限公司,西安 710061
Corrosion Evaluation Indicators and Extraction Method of Structural Steel Based on Morphology
WANG Youde1,2, SHI Tao1, XIA Min1, XU Shanhua1
1 Key Laboratory of Engineering Structural Safety and Durability, Xi'an University of Architecture and Technology, Xi'an 710055, China;
2 Postdoctoral Innovation Base, Xi'an University of Architecture and Technology & Shaanxi Non-ferrous Construction Co., Ltd., Xi'an 710061, China
下载:  全 文 ( PDF ) ( 5852KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对现有的锈蚀评价指标进行总结,提出了结构钢锈蚀程度评价指标体系;采用三维非接触式表面形貌仪对人工加速锈蚀钢板进行表面形貌测试,提出基于形貌的锈蚀评价指标提取方法并开发相应的计算程序;对提取结果进行统计分析发现,随着锈蚀龄期的增长,锈蚀损伤参数Dn逐渐增大,最小截面面积Ama和锈蚀等级参数φ逐渐减小,所有试件均处于轻度锈蚀状态;锈蚀深度均值Δtave、锈蚀深度标准差tsd、锈坑深度h及其分布区间均逐渐增大,锈坑密度Pd逐渐减小,锈坑形状由圆柱体和半球体逐渐向锥体转变。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王友德
史涛
夏敏
徐善华
关键词:  锈蚀  结构钢  表面形貌  评价指标  提取方法    
Abstract: Through summarizing and analyzing the existing corrosion evaluation indicators, an evaluation indicators system for corrosion degree of structural steel were put forward. A three-dimensional non-contact profiler was employed to measure the surface morphology of artificially accele-rated corroded steel plates, and a morphology-based method to extract the corrosion indicators was proposed accompanied with a corresponding calculation algorithm. Through the statistical analysis of extracted results, it was found that with the increase of corrosion age, the corrosion da-mage parameter Dn gradually increased, and the minimum cross-sectional area Ama and the corrosion grade parameter φ gradually decreased. All test pieces were in the state of “slight corrosion”. Besides, the mean value of corrosion depth Δtave, the standard deviation of corrosion depth tsd, the pit depth h and its distribution range were gradually increased, and the pit density Pd was gradually reduced. Meanwhile, the shape of pits was gradually changed from a cylinder or hemisphere to a cone.
Key words:  corrosion    structural steel    morphology    evaluation indicators    extraction method
                    发布日期:  2021-09-07
ZTFLH:  TU511.3  
基金资助: 国家自然科学基金(51908455);中国博士后科学基金(2021M692511);陕西省教育厅科研计划项目(19JS042)
通讯作者:  yord.w@xauat.edu.cn   
作者简介:  王友德,副教授,硕士研究生导师。现为西安建筑科技大学“工程结构耐久性与全寿命”科研团队青年骨干成员(科研秘书)。主要研究方向为钢结构耐久性、锈损钢结构抗震与疲劳、既有钢结构性能提升新技术。主持国家自然科学基金青年项目1项,中国博士后科学基金面上项目2项,发表学术论文30余篇,获省部级科学技术奖一等奖2项、厅局级科学技术奖一等奖2项。
引用本文:    
王友德, 史涛, 夏敏, 徐善华. 基于形貌的结构钢锈蚀评价指标及提取方法[J]. 材料导报, 2021, 35(16): 16138-16143.
WANG Youde, SHI Tao, XIA Min, XU Shanhua. Corrosion Evaluation Indicators and Extraction Method of Structural Steel Based on Morphology. Materials Reports, 2021, 35(16): 16138-16143.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070143  或          http://www.mater-rep.com/CN/Y2021/V35/I16/16138
1 Nakai T, Matsushita H, Yamamoto N. Thin-Walled Structures, 2006, 44(1), 10.
2 Nakai T, Matsushita H, Yamamoto N, et al. Marine Structures, 2004, 17(5), 403.
3 Nakai T, Matsushita H, Yamamoto N. Marine Structures, 2004, 17(8), 612.
4 Hui Y L, Lin Z S. Industrial Construction, 1997, 27(6), 10(in Chinese).
惠云玲, 林志伸. 工业建筑, 1997, 27(6), 10.
5 Reiser D B, Alkire R C. Corrosion Science, 1984, 24, 587.
6 Pidaparti R M, Patel R R. Materials Letter, 2008, 62, 4497.
7 Luo L, Huang Y, Weng S, et al. Materials Design, 2016, 105, 240.
8 Horner D A, Connolly B J, Zhou S, et al. Corrosion Science, 2011, 53, 3466.
9 Wang Y, Cheng G. Materials Design, 2016, 94, 176.
10 Tang F, Lin Z, Chen G, et al. Construction & Building Materials, 2014, 70, 104.
11 Holme B, Lunder O. Corrosion Science, 2007, 49, 391.
12 Xu S, Qiu B. Materials Science & Engineering, 2013, 584A, 163.
13 Xu S, Wang Y. International Journal of Fatigue, 2015, 72, 27.
14 Paik J K, Lee J M, Man J K. Thin-Walled Structures, 2004, 42(8), 1161.
15 Mu X, Wei J, Dong J H, et al. Acta Metallurgica Sinica, 2012, 48(4), 420(in Chinese).
穆鑫, 魏洁, 董俊华, 等. 金属学报, 2012, 48(4), 420.
16 Shang Y. Study on the corrosive environment influences on the characte-ristics of the steel-structure surface. Master's Thesis, Xi'an University of Architecture & Technology, China, 2011(in Chinese).
商钰. 腐蚀环境对钢结构表面锈蚀特征影响的研究. 硕士学位论文, 西安建筑科技大学, 2011.
17 Melchers R E. Corrosion, 2004, 60, 824.
18 Melchers R E. Corrosion, 2004, 60, 937.
19 Shi W, Tong L, Chen Y, et al. Journal of Building Structures, 2012, 33(7), 53(in Chinese).
史炜洲, 童乐为, 陈以一, 等. 建筑结构学报, 2012, 33(7), 53.
20 Qiu B, Xu S. Materials for Mechanical Engineering, 38(10), 60(in Chinese).
邱斌, 徐善华. 机械工程材料, 2014, 38(10), 60.
21 Garbatov Y, Soares C G, Parunov J, et al. Corrosion Science, 2014, 85(1), 296.
22 Sheng J, Xia J. Construction & Building Materials, 2017, 131, 90.
23 Ahmmad M M, Sumi Y. Journal of Marine Science & Technology, 2010, 15(1), 1.
24 Appuhamy J M R S, Kaita T, Ohga M, et al. International Journal of Steel Structures, 2011, 11(1), 65.
25 Kariya A, Tagaya K, Kaita T, et al. In: Proceeding of the 3rd International Structural Engineering and Construction Conference (ISEC-03). Japan, 2005, pp. 105.
26 Muranaka A, Minata O, Fujii K. Journal of Structural Engineering, 1988, 44, 1063.
27 Wang Y, Xu S, Li A. Structure and Infrastructure Engineering, 2020, 16(11), 1562.
28 Li A, Xu S. Materials Reports B:Research Papers, 2019, 33(10), 3502(in Chinese).
李安邦, 徐善华. 材料导报:研究篇, 2019, 33(10), 3502.
29 Xu S, Li H, Wang Y. Journal of Harbin Institute of Technology, 2020, 52(2), 96(in Chinese).
徐善华, 李晗, 王玉娇. 哈尔滨工业大学学报, 2020, 52(2), 96.
30 Xu S, Wang H, Li A, et al. Journal of Constructional Steel Research, 2016, 126, 50.
31 Ma Y, Zhang A. Industrial Construction, 2005, 35(12), 11(in Chinese).
马亚丽, 张爱林. 工业建筑, 2005, 35(12), 11.
32 Pao P S, Gill S J, Sankaran K K. Scripta Materialia, 2002, 45(5), 605.
33 Kimberli J, David W H. Corrosion Science, 2006, 48(10), 3109.
34 Xu S, Wang Y, Xue Q. Journal of Harbin Institute of Technology, 2015, 22, 15.
35 Wang Y, Xu S, Wang H, et al. Construction & Building Materials, 2017, 152, 777.
36 Wang Y, Xu S, Li H, et al. Acta Metallurgica Sinica, 2020, 56(2), 148(in Chinese).
王友德, 徐善华, 李晗, 等. 金属学报, 2020, 56(2), 148.
[1] 王旭, 牛宗伟, 王晓明, 赵阳, 韩国峰, 常青, 付华, 滕涛, 赵菲菲. 外场(力)辅助射流电沉积研究现状[J]. 材料导报, 2021, 35(5): 5107-5121.
[2] 徐善华, 宋翠梅, 李晗. 模拟海洋和一般大气环境下锈蚀钢材表面形貌差异研究[J]. 材料导报, 2021, 35(2): 2125-2132.
[3] 徐善华, 赵晓蒙, 张海江, 张宗星, 王亮. 锈损冷弯薄壁钢板的断裂机制与断裂模型[J]. 材料导报, 2021, 35(14): 14130-14135.
[4] 杨燕, 谭康豪, 覃英宏. 混凝土内氯离子扩散影响因素的研究综述[J]. 材料导报, 2021, 35(13): 13109-13118.
[5] 郑山锁, 杨建军, 郑跃, 董立国, 温桂峰, 姬金铭. 锈蚀钢筋混凝土粘结滑移性能综述[J]. 材料导报, 2020, 34(Z2): 221-226.
[6] 冯光岩, 金祖权, 熊传胜, 范君峰. 海洋潮汐区暴露700 d带裂缝混凝土中耐蚀钢筋的锈蚀行为[J]. 材料导报, 2020, 34(8): 8064-8070.
[7] 孙杨,乔国富. 锈蚀钢筋与混凝土粘结性能研究综述[J]. 材料导报, 2020, 34(3): 3116-3125.
[8] 刘鹏飞, 王思捷, 殷凤仕, 单腾, 乔玉林. 2024铝合金表面激光除漆工艺及机理[J]. 材料导报, 2020, 34(24): 24121-24126.
[9] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[10] 徐善华, 夏敏. 锈蚀钢材表面的分形维数与多重分形谱[J]. 材料导报, 2020, 34(16): 16140-16143.
[11] 马英怡, 刘玉德, 石文天, 韩冬, 侯岩军. 芳纶纤维增强复合材料的微铣削与铣磨精加工[J]. 材料导报, 2020, 34(16): 16177-16181.
[12] 王朝阳, 周全, 杨鸥, 霍静思, 王海涛. 钢筋锈蚀率对钢筋与混凝土黏结性能的影响[J]. 材料导报, 2019, 33(Z2): 309-316.
[13] 陈俊, 张白, 杨鸥, 龙士国, 许福, 杨才千. 黏结长度对锈蚀钢筋与混凝土间黏结性能的影响[J]. 材料导报, 2019, 33(22): 3744-3751.
[14] 李安邦, 徐善华. 中性盐雾加速腐蚀钢结构表面形貌分形维数表征[J]. 材料导报, 2019, 33(20): 3502-3507.
[15] 王潇舷, 金祖权, 姜玉丹, 陈凡秀. 基于DIC与应变测试的混凝土中钢筋锈胀应力分析[J]. 材料导报, 2019, 33(16): 2690-2696.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed