Please wait a minute...
材料导报  2020, Vol. 34 Issue (24): 24121-24126    https://doi.org/10.11896/cldb.19120234
  金属与金属基复合材料 |
2024铝合金表面激光除漆工艺及机理
刘鹏飞1,2, 王思捷2, 殷凤仕3, 单腾1,2, 乔玉林2
1 山东理工大学化学化工学院,淄博255049
2 陆军装甲兵学院机械产品再制造国家工程研究中心,北京100072
3 山东理工大学机械工程学院,淄博255049
Process and Mechanism of Laser Removal of Paint on 2024 Aluminum Alloy
LIU Pengfei1,2, WANG Sijie2, YIN Fengshi3, SHAN Teng1,2, QIAO Yulin2
1 School of Chemical Engineering, Shandong University of Technology, Zibo 255049, China
2 National Engineering Research Center for Mechanical Product Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
3 School of Mechanical Engineering, Shandong University of Technology, Zibo 255049, China
下载:  全 文 ( PDF ) ( 9780KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 激光除漆具有应用范围广、精度高、无损伤、无污染等优点,极具发展潜力。针对飞机蒙皮常用的2024铝合金表面激光除漆的研究有助于拓展该技术在航空再制造领域的应用。本工作使用纳秒脉冲激光清洗设备,开展了不同激光能量密度及扫描速度下2024铝合金表面激光除漆实验。结果表明:激光能量密度和扫描速度对除漆表面质量有很大的影响,在扫描速度为50 cm2/s的情况下,能量密度为16.5 J/cm2时除漆效果最佳,能量密度为21.22 J/cm2时达到漆层的损伤阈值;随着激光能量密度的提高或扫描速度的降低,表面去漆率逐渐提高,除漆表面表现出较基体更为优异的力学性能,显微硬度及弹性模量都有所提高。此外,还通过扫描电镜和能谱测试分析了不同扫描速度下的除漆机理。根据研究结果可知,通过调控激光能量密度及扫描速度,可以实现在提高油漆去除效率的同时避免基体的损伤,进而有利于对除漆后的蒙皮进行重新涂装。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘鹏飞
王思捷
殷凤仕
单腾
乔玉林
关键词:  激光除漆  扫描速度  粗糙度  表面形貌  能量密度    
Abstract: Laser paint removal has the advantages of wide application range, high precision, no damage and no pollution, and has great development potential. Research on the laser removal of 2024 aluminum alloy surface commonly used in aircraft skin is helpful to expand the application of this technology in the field of aviation remanufacturing. In this work, we carried out laser depainting experiments on the surface of 2024 aluminum alloy at different laser energy densities and scanning speeds through nanosecond pulse laser cleaning equipment. The results show that the laser energy density and scanning speed have a great influence on the cleaning surface quality. When the scanning speed is 50 cm2/s and the energy density is 16.5 J/cm2, the best effect of laser clearing was got. When the energy density is greater than 21.22 J/cm2, the paint damage threshold was reached. With the increase of laser energy density or the decrease of scanning speed, the paint removal rate increases gradually. The mechanical properties of the paint removal surface are better than that of the matrix, and the microhardness and elastic modulus are improved. In addition, we also analyzed the paint removal mechanism at different scanning speeds by SEM and EDS. According to our research results, by adjusting the laser energy density and scanning speed, it is possible to improve the efficiency of paint removal while avoiding damage to the substrate, which is beneficial to recoating the aircraft skin after paint removal.
Key words:  laser cleaning    scanning speed    roughness    surface topography    energy density
               出版日期:  2020-12-25      发布日期:  2020-12-24
ZTFLH:  TN249  
基金资助: 国家自然科学基金(51805541);2018年国家重点研发计划(2018YFB0407401)
通讯作者:  wsj665588@126.com   
作者简介:  刘鹏飞,山东理工大学,硕士研究生。于2019年3月在陆军装甲兵学院联合培养学习至今,主要从事激光清洗与表面物理冶金领域的研究。
王思捷,陆军装甲兵学院,助理研究员。2012年12月毕业于陆军装甲兵学院,材料加工工程博士学位。同年加入陆军装甲兵学院装备保障与再制造系机械产品再制造国家工程研究中心工作至今,主要从事表面工程与激光加工技术的研究。
引用本文:    
刘鹏飞, 王思捷, 殷凤仕, 单腾, 乔玉林. 2024铝合金表面激光除漆工艺及机理[J]. 材料导报, 2020, 34(24): 24121-24126.
LIU Pengfei, WANG Sijie, YIN Fengshi, SHAN Teng, QIAO Yulin. Process and Mechanism of Laser Removal of Paint on 2024 Aluminum Alloy. Materials Reports, 2020, 34(24): 24121-24126.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120234  或          http://www.mater-rep.com/CN/Y2020/V34/I24/24121
1 Zheng G. Study on laser paint removal technology of aircraft skin with skin. Master′s Thesis, Institute of Electronics, Chinese Academy of Sciences, China,2005(in Chinese).
郑光. 飞机蒙皮激光脱漆技术研究.硕士学位论文,中国科学院电子学研究所, 2005.
2 Jin S,Wang J X,Yuan X D, et al. Aeronautical Manufacturing Technology, 2018, 61(17), 63(in Chinese).
靳森, 王静轩, 袁晓东, 等. 航空制造技术, 2018, 61(17), 63.
3 Jiang Y L, Ye Y Y, Zhou G R, et al. Infrared and Laser Engineering, 2018, 47(12), 29(in Chinese).
蒋一岚, 叶亚云, 周国瑞, 等.红外与激光工程, 2018, 47(12), 29.
4 Moskal D, Martan J, Kucˇera M, et al.Physics Procedia, 2016, 83, 2497.
5 Lei Z L, Tian Z, Chen Y B. Laser & Optoelectronics Progress, 2018, 55(3), 030005(in Chinese).
雷正龙, 田泽, 陈彦宾.激光与光电子学进展, 2018, 55(3), 030005.
6 Kumar A, Biswas D J. Optics & Laser Technology, 2018, 106, 286.
7 Watkins K G. International Society for Optics and Photonics, 2000, 3888, 165.
8 Autric M L, Oltra R,Prague-Dl O. International Society for Optics and Photonics, 2005, 5777, 982.
9 Tsunemi A, Hagiwara K, Saito N, et al.Applied Physics A, 1996, 63(5), 435.
10 Li X K, Zhang Q H, Zhou X Z, et al. Optik, 2018,156, 841.
11 Shi S D, Du P, Li W, et al. Chinese Journal of Lasers, 2012, 39(9), 0903001(in Chinese).
施曙东, 杜鹏, 李伟, 等. 中国激光, 2012, 39(9), 0903001.
12 Guo Z H, Zhou J Z, Meng X K, et al. Chinese Journal of Lasers, 2019, 46(10), 1002012(in Chinese).
郭召恒, 周建忠, 孟宪凯, 等. 中国激光, 2019, 46(10), 1002012.
13 Jasim H A, Demir A G, Previtali B, et al. Optics & Laser Technology, 2017, 93, 60.
14 Xu B S. China Surface Engineering, 2010, 23(2), 1(in Chinese).
徐滨士.中国表面工程, 2010, 23(2),1.
15 Sun Y H, Zhang B C, Jia X J, et al. Surface Technology, 2018, 47(9), 288(in Chinese).
孙一航, 张保财, 贾秀杰, 等.表面技术, 2018, 47(9), 288.
16 Pan Y, Wang M D, Liu J C, et al. Applied Laser, 2019, 39(2), 269(in Chinese).
潘煜, 王明娣, 刘金聪, 等.应用激光, 2019, 39(2), 269.
17 Chen X M, Wang H J, Zhou X L, et al. Materials Review, 2018, 32(z1),341(in Chinese).
陈小明, 王海金, 周夏凉, 等. 材料导报, 2018, 32(专辑31), 341.
18 Yang P C, Song Y L, Liu Y H, et al. Surface Technology, 2018, 47(9), 196(in Chinese).
杨鹏聪, 宋雨来, 刘耀辉, 等.表面技术, 2018, 47(9), 196.
[1] 赵立敏, 王惠亚, 解启飞, 邓秉浩, 张芳, 何丹农. 车用动力锂离子电池纳米硅/碳负极材料的制备技术与发展[J]. 材料导报, 2020, 34(7): 7026-7035.
[2] 张梦清, 乔玉林, 吉小超, 周克兵, 张伟, 于鹤龙. 线圈扫描速度对感应熔覆NiCrBSi涂层组织与性能的影响[J]. 材料导报, 2020, 34(6): 6120-6125.
[3] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[4] 梁静静, 张相召, 赵光辉, 刘桂武, 邵海成, 乔冠军. 磨削加工对Al2O3陶瓷表面质量与力学性能的影响[J]. 材料导报, 2020, 34(16): 16020-16024.
[5] 徐善华, 夏敏. 锈蚀钢材表面的分形维数与多重分形谱[J]. 材料导报, 2020, 34(16): 16140-16143.
[6] 马英怡, 刘玉德, 石文天, 韩冬, 侯岩军. 芳纶纤维增强复合材料的微铣削与铣磨精加工[J]. 材料导报, 2020, 34(16): 16177-16181.
[7] 肖长江, 窦志强, 朱振东. 氧化铁刻蚀金刚石表面形貌的表征及形成机理[J]. 材料导报, 2020, 34(14): 14045-14050.
[8] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. 激光扫描速度对TC4合金表面激光熔覆复合涂层组织及性能的影响[J]. 材料导报, 2020, 34(12): 12094-12100.
[9] 吕菲, 田原, 宋晶, 杨春颖, 刘雪松. 化学腐蚀工艺对锗单晶片机械强度的影响[J]. 材料导报, 2019, 33(Z2): 428-430.
[10] 李安邦, 徐善华. 中性盐雾加速腐蚀钢结构表面形貌分形维数表征[J]. 材料导报, 2019, 33(20): 3502-3507.
[11] 王先, 于思荣, 赵严, 张鹏, 刘恩洋, 熊伟. 微弧氧化时间对TA15合金陶瓷膜表面形貌和性能的影响[J]. 材料导报, 2019, 33(12): 2009-2013.
[12] 孙书兵, 刘艳松, 何小珊, 王锋, 何智兵, 黄景林, 刘磊. 空心微球上Al-W多层涂层的制备与表征[J]. 材料导报, 2018, 32(24): 4297-4302.
[13] 祝璐,尹沛羊,邓湘云,李建保,张伟,金宏. Ce3+掺杂钛酸钡纳米管薄膜的制备与性能[J]. 《材料导报》期刊社, 2018, 32(11): 1924-1927.
[14] 张成光,张 勇,张飞虎. 电化学射流加工的电场仿真及实验研究[J]. 《材料导报》期刊社, 2017, 31(24): 191-199.
[15] 王毅, 王盼, 索红莉, 贾强, 卢东琪, 李怀洲, 吴海明. 哈氏合金电化学抛光工艺的研究*[J]. 《材料导报》期刊社, 2017, 31(2): 37-40.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed