Please wait a minute...
材料导报  2018, Vol. 32 Issue (24): 4297-4302    https://doi.org/10.11896/j.issn.1005-023X.2018.24.016
  金属与金属基复合材料 |
空心微球上Al-W多层涂层的制备与表征
孙书兵1,2, 刘艳松1, 何小珊1, 王锋2, 何智兵1, 黄景林1, 刘磊1
1 中国工程物理研究院激光聚变研究中心,绵阳 621900;
2 重庆交通大学材料科学与工程学院,重庆 400074
Preparation and Characterization of Aluminum-Tungsten Coatings on Hollow Microspheres
SUN Shubing1,2, LIU Yansong1, HE Xiaoshan1, WANG Feng2, HE Zhibing1, HUANG Jinglin1, LIU Lei1
1 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900;
2 College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074
下载:  全 文 ( PDF ) ( 3546KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在惯性约束聚变研究中,高-低Z金属涂层对提高靶丸的性能具有重要的作用。本实验采用直流磁控溅射技术和驱动微球运动的倾斜旋转托盘与敲击装置,在GDP空心微球表面溅射了不同工作气压的Al-W多层涂层,利用扫描电镜(SEM)、原子力显微镜(AFM)、X射线衍射仪(XRD)研究气压变化对多层涂层质量的影响规律。结果表明:多层涂层的厚度均匀性好,达90%以上,涂层均呈致密的柱状晶生长,残余应力小,涂层质量受工作气压影响显著。涂层结构的致密度随气压增大而下降,涂层的形貌与颗粒尺寸发生相应的变化,致使多层涂层的表面粗糙度随气压增大呈现出先减小后增大的变化趋势。当工作气压为0.5 Pa时,Al-W涂层的综合性能最好,表面颗粒形貌为细小均匀的塔形,表面粗糙度值低至331.1 nm,残余应力小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙书兵
刘艳松
何小珊
王锋
何智兵
黄景林
刘磊
关键词:  Al-W多层涂层  工作气压  壁厚均匀性  柱状晶  表面粗糙度    
Abstract: In the research of inertial confinement fusion, high-low Z metal coating is vital to the performance of target. Tilt rotating tray and knocking device were applied in this experiment by DC magnetron sputtering technology. The Al-W multilayer coa-tings with different working pressure were deposited on GDP hollow microspheres. And using scanning electron microscopy, atomic force microscopy and X-ray diffractometer to study the effect of working pressure on the quality of the multilayer coatings. The results show that the uniformity of thickness of the multilayer coating is better which is more than 90%. And the coating has a compact columnar crystal growth model with small residual stress. The working pressure has significant influence on the quality of the coa-tings. The density of structure decreased with pressure increased. At the same time, the morphology and particle size of the coating changes. All of which has result a similar variation tendency of the surface roughness corresponding to the surface particles. A ten-dency decreased first and then increased when the working pressure increase. Especially, when the working pressure is 0.5 Pa, the Al-W coating has the best comprehensive performance. Its surface morphology is of small homogeneous pyramid-shape and surface roughness value is as low as 331.1 nm.
Key words:  Al-W multilayer coating    working pressure    uniformity of wall thickness    columnar crystal    surface roughness
                    发布日期:  2019-01-23
ZTFLH:  TQ153.2  
基金资助: 国家自然科学基金(51401194)
通讯作者:  何智兵:通信作者,男,1984年生,博士,研究员,从事磁控溅射研究 E-mail:hezibing802@163.com   
作者简介:  孙书兵:女,1993年生,硕士研究生,从事金属纳米材料的研究
引用本文:    
孙书兵, 刘艳松, 何小珊, 王锋, 何智兵, 黄景林, 刘磊. 空心微球上Al-W多层涂层的制备与表征[J]. 材料导报, 2018, 32(24): 4297-4302.
SUN Shubing, LIU Yansong, HE Xiaoshan, WANG Feng, HE Zhibing, HUANG Jinglin, LIU Lei. Preparation and Characterization of Aluminum-Tungsten Coatings on Hollow Microspheres. Materials Reports, 2018, 32(24): 4297-4302.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.24.016  或          http://www.mater-rep.com/CN/Y2018/V32/I24/4297
1 Stephens E H, Nikroo A, Goodin D T, et al. Optimizing high-Z coatings for inertial fusion energy shells[J].Fusion Science & Technology,2003,43(3):346.
2 Müller C M, Sologubenko A S, Gerstl S S A, et al. Nanoscale Cu/Ta multilayer deposition by co-sputtering on a rotating substrate. Empirical model and experiment[J].Surface & Coatings Technology,2016,302:284.
3 Guo H Y, Xia M, Wu Z T, et al. Nanocrystalline-grained tungsten prepared by surface mechanical attrition treatment: Microstructure and mechanical properties[J].Journal of Nuclear Materials,2016,480:281.
4 Huang J, Liu Y, Du K, et al. Microstructure evolution of copper-doped tungsten coatings for inertial confinement fusion application[J].Fusion Science & Technology,2017.71(2):187.
5 Nikroo A, Baugh W, Steinman D A. Fabrication of gas-filled tungsten-coated glass shells[J].Fusion Science & Technology,2003,45(2):202.
6 Jaquez J S, Alfonso E L, Nikroo A, Greenwood A L. Aluminum coatings as a deuterium permeation barrier on foam shells and the dependence on foam surface finish[J].Fusion Science & Technology,2007,51:688.
7 Czechowicz D G, Dorman J A, Geronimo J C, et al. Tungsten sputter coating development to produce high Z shells[J].Fusion Science & Technology,2007,51(4):631.
8 Jankowski A F, Hayes J P, Morse J D. Chambered capsule coatings[J].Thin Solid Films,2001,398(398):587.
9 Xu H W, Alford C S, Cooley J C, et al. Beryllium capsule coating development for NIF targets[J].Fusion Science & Technology,2007,51(4):547.
10 Zhang Y, Ma H, Yi M, et al. Magnetron-sputtering fabrication of noble metal nanodots coated TiO2, nanoparticles with enhanced photocatalytic performance[J].Materials & Design,2017,125:94.
11 Chang C L, Chiou T H, Chen P H, et al. Characteristics of TiN/W2N multilayers prepared using magnetron sputter deposition with dc and pulsed dc powers[J]. Surface & Coatings Technology,2016,303:25.
12 Stueber M, Diechle D, Leiste H, et al. Synthesis of Al-Cr-O-N thin films in corundum and f.c.c. structure by reactive r.f. magnetron sputtering[J].Thin Solid Films,2011,519(12):4025.
13 Emadinia O, Simões S, Viana F, et al. Cold rolled versus sputtered Ni/Ti multilayers for reaction-assisted diffusion bonding[J].Welding in the World,2016,60(2):337.
14 Liu G T, Sun Y, Guo Z Z, et al. Structure and properties of magnetron sputtering Cu-Nb and Cu-Mo films[J].Materials Review B: Research Papers.2012,26(3):49(in Chinese).
刘国涛,孙勇,郭中正,等.磁控溅射Cu-Nb和Cu-Mo薄膜结构与性能[J].材料导报:研究篇,2012,26(3):49.
15 Xu W, Yu J, Wang X J, et al. Effect of process parameters on pro-perties of ZnO:Al thin films by magnetron sputtering[J].Materials Review,2009,23(s1):387(in Chinese).
徐玮,于军,王晓晶,等.磁控溅射中工艺参数对ZnO∶Al薄膜性能的影响[J].材料导报,2009,23(s1):387.
16 Liu M F, Chen S F, Liu Y Y, et al. Characterization of sphericity and wall thickness uniformity of thick walled hollow microspheres[J].High Power Laser and Particle Beams,2014,26(2):153.
刘梅芳,陈素芬,刘一杨,等.厚壁空心微球的球形度和壁厚均匀性的表征研究[J].强激光与粒子束,2014,26(2):153.
17 Sun H L, Song Z X, Guo D G, et al. Microstructure and mechanical properties of nanocrystalline tungsten thin films[J].Journal of Materials Science & Technology,2010,26(1):87.
18 Karabacak T, Mallikarjunan A, Singh J P, et al. β-phase tungsten nanorod formation by oblique-angle sputter deposition[J].Applied Physics Letters,2003,83(15):3096.
19 Vassallo E, Caniello R, Canetti M, et al. Microstructural characte-rization of tungsten coatings deposited using plasma sputtering on Si substrates[J].Thin Solid Films,2014,558:189.
20 Hell J, Horkel M, Neubauer E, et al. Construction and characterization of a sputter deposition system for coating granular materials[J].Vacuum,2009,84(4):453.
21 Savaloni H, Babaei F, Song S, et al. Influence of substrate rotation speed on the nanostructure of sculptured Cu thin films[J].Vacuum,2011,85(7):776.
22 Wang C, Brault P, Zaepffel C, et al. Deposition and structure of W-Cu multilayer coatings by magnetron sputtering[J].Journal of Phy-sics D: Applied Physics,2003,36(36):2709
23 Yu X, Shen Z, Xu Z. Preparation and characterization of Ag-coated cenospheres by magnetron sputtering method[J].Nuclear Instruments & Methods in Physics Research Section B,2007,265(2):637.
24 Schmid G H S, Eisenmenger-Sittner C. A method for uniformly coating powdery substrates by magnetron sputtering[J].Surface & Coatings Technology,2013,236(2):353.
25 Wang C, Brault P, Zaepffel C, et al. Deposition and structure of W-Cu multilayer coatings by magnetron sputtering[J].Journal of Phy-sics D Applied Physics,2003,36(36):2709.
26 Yang H M, Chen Y F, Xu X Y. Effect of sputtering pressure on the structure and electrical properties of Al2O3 thin films[J].Science Technology and Engineering,2010,10(24):5985(in Chinese).
杨和梅,陈云福,徐秀英.溅射气压对Al2O3薄膜的结构与电性能的影响[J].科学技术与工程,2010,10(24):5985.
27 Willmott P R. Deposition of complex multielemental thin films[J].Progress in Surface Science,2004,76(6-8):163.
28 Hao M, Liu K, Liu X, et al. Experimental investigation on photoelectric properties of ZAO thin film deposited on flexible substrate by magnetron sputtering[J]. Applied Surface Science,2016,388:259.
29 Li D J, Wang M X, Zhang J J, et al. Working pressure induced structural and mechanical properties of nanoscale ZrN/W2N multilayered coatings[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films,2006,24(4):966.
30 Chang C L, Chiou T H, Chen P H, et al. Characteristics of TiN/W2N multilayers prepared using magnetron sputter deposition with dc and pulsed dc powers[J].Surface and Coatings Technology,2016,303:25.
31 Tse Y Y, Babonneau D, Michel A, et al. Nanometer-scale multila-yer coatings combining a soft metallic phase and a hard nitride phase: Study of the interface structure and morphology[J].Surface & Coatings Technology,2004,180(3):470.
32 Chu J P, Lin T N. Deposition, microstructure and properties of sputtered copper films containing insoluble molybdenum[J].Journal of Applied Physics,1999,85(9):6462.
33 Kamiko M, Suenaga R, Koo J W, et al. Effect of seed layers on structure of self-organized Ag nanodots on MgO substrates[J].Japanese Journal of Applied Physics,DOI:10.7567/JJAP.54.06FH06.
34 Shen Y G, Mai Y W, Zhang Q C. Residual stress, microstructure, and structure of tungsten thin films deposited by magnetron sputtering[J].Journal of Applied Physics,2000,87(1):177.
[1] 李志峰,何永全,曹光明,汤军舰,刘振宇. 热轧钢材氧化铁皮的高温形变机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 259-262.
[2] 王毅, 王盼, 索红莉, 贾强, 卢东琪, 李怀洲, 吴海明. 哈氏合金电化学抛光工艺的研究*[J]. 《材料导报》期刊社, 2017, 31(2): 37-40.
[3] 余剑武, 胡其丰, 段文, 何利华, 沈湘. 电加工8418钢的能量分配与表面粗糙度模型*[J]. 《材料导报》期刊社, 2017, 31(14): 153-157.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed