Please wait a minute...
材料导报  2021, Vol. 35 Issue (5): 5107-5121    https://doi.org/10.11896/cldb.19120215
  金属与金属基复合材料 |
外场(力)辅助射流电沉积研究现状
王旭1,2, 牛宗伟1, 王晓明2, 赵阳2, 韩国峰2, 常青2, 付华3, 滕涛4, 赵菲菲5
1 山东理工大学机械工程学院,淄博 255049
2 陆军装甲兵学院,装备再制造技术国防科技重点实验室,北京 100072
3 中国人民解放军75180部队,桂林 541005
4 中国人民解放军32381部队,北京 100072
5 陆军边海防学院,电子工程教研室,西安 710108
Research Status of External Force Assisted Jet Electrodeposition
WANG Xu1,2, NIU Zongwei1, WANG Xiaoming2, ZHAO Yang2, HAN Guofeng2, CHANG Qing2, FU Hua3, TENG Tao4, ZHAO Feifei5
1 College of Mechanical Engineering, Shandong University of Technology, Zibo 255049, China
2 Key Laboratory of National Defense Technology for Equipment Remanufacturing Technology, Army Armored Forces Academy, Beijing 100072, China
3 Unit 75180 of the People’s Liberation Army of China, Guilin 541005, China
4 Unit 32381 of the People’s Liberation Army of China, Beijing 100072, China
5 Department of Electronic Engineering, Army Academy of Border and Coastal Defence, Xi’an 710108, China
下载:  全 文 ( PDF ) ( 27177KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 射流电沉积技术是近年来新出现的一种选择性电沉积技术,其具有沉积速度快、沉积精度高和成本低等优点,可解决传统电沉积沉积效率低、沉积质量差等问题,并在快速高效制备高性能镀层上得到了广泛应用。 然而,在利用射流电沉积技术追求更高性能和更大厚度的沉积层时,其局限性也逐渐显现,主要体现在沉积厚度不均匀和无法抑制并消除沉积过程中镀层中产生的突起、结瘤、氢气气泡等缺陷,以及在复合电沉积时无法解决复合颗粒团聚的问题,而这也严重限制了射流电沉积技术的实际应用。
为消除射流电沉积技术的局限性,研究发现,引入磁场、超声或摩擦外力辅助后可有效优化沉积质量,大大减少镀层中缺陷的数量,显著改善复合颗粒的团聚现象,有助于制备出平均晶粒尺寸更小、表面更加平整均匀以及硬度、耐磨性和耐腐蚀性等性能更加良好的镀层,但同时也发现,不合适的磁感应强度、超声功率和模式、摩擦力等参数反而会造成镀层表面质量和性能的下降。
与此同时,相关学者在已成功利用外力辅助射流电沉积制备高质量、高性能镀层的基础上,着重研究了辅助外力参数对镀层表面质量和性能的影响机制,在充分发挥外力辅助作用的同时进一步追求镀层的制备效率,并取得了丰硕的成果。
由此,本文归纳了磁场、超声、摩擦三种外力辅助射流电沉积制备镀层的研究现状,并对三种外力的作用原理和机制进行了详细探讨,指出了三种外力辅助的适用对象、当前存在的问题和发展趋势,为制备性能更优的镀层,甚至微纳增材制造和快速成型提供了参考依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王旭
牛宗伟
王晓明
赵阳
韩国峰
常青
付华
滕涛
赵菲菲
关键词:  磁场  超声  摩擦  射流电沉积  表面形貌    
Abstract: Jet electrodeposition is a new selective electrodeposition technique developed in recent years, which has the advantages of fast deposition speed, high deposition accuracy and low cost, and can solve the problems of low deposition efficiency and poor deposition quality of traditional electrodeposition, and has been widely used in the rapid and efficient preparation of high-performance coatings. However, the limitations of the application of jet electrodeposition in the pursuit of higher performance and larger thickness of the sedimentary obvious, which are mainly reflected in the uneven deposition thickness and unable to suppress and elimate protuberant, nodules, hydrogen bubble defects during deposition, and can not solve the problem of composite particles together, and they seriously restrict the practial application of the jet electrodeposition technique.
To eliminate the limitation of the jet electrodeposition technique, the study found that the introduction of magnetic field, ultrasonic or friction auxiliary force can effectively optimize the deposit quality, greatly reduce the amount of coating defects, significantly improve the composite particle reunion phenomenon, and help to prepare coatings with smaller grains, smoother surface, better hardness, better wear resistance and better corrosion resistance. Besides, they found that the uncomfortable magnetic induction intensity, ultrasonic power and mode, friction and other parameters will cause the coatings surface quality and performance decline.
At the same time, on the basis of sucessfully using extermal force assisted jet electrodeposition to prepare high quality and high performance coatings, relevant scholars also focused on studying the influence mechanism of external force parameters on the surface quality and performance of coatings, in order to give full play to the auxiliary effect of external forces and further pursue the efficiency of coating preparation, and have achieved fruitful results.
Thus, this review summarizes the research status of preparing coatings by magnetic field, ultrasonic or friction force assisted jet electrodeposition. Besides, the action principle of three kinds of external force and mechanism is discussed in detail, and points out the applicable objects, the existing problems and development trend of three kinds of auxiliary force, which provides the reference for preparing coatings with better perfor-mance even micro-nano additive manufacturing and rapid prototyping technology.
Key words:  magnetic field    ultrasonic    friction    jet electrodeposition    surface morphology
               出版日期:  2021-03-10      发布日期:  2021-03-12
ZTFLH:  TG146  
基金资助: 国家重点研发计划(2018YFB1105800);东北大学航空动力装备振动及控制教育部重点实验室研究基金(VCAME201706)
通讯作者:  zhaoyang033@163.com; chang2008qing@163.com   
作者简介:  王旭,2018年毕业于辽宁科技大学,获得学士学位,现为山东理工大学硕士研究生。主要研究领域为射流电沉积。
赵阳,1983年生,工学博士,助理研究员。研究方向为铜合金增材制造及表面强化。
常青,1987年生,硕士,助理研究员。研究方向为表面工程和再制造工程。
引用本文:    
王旭, 牛宗伟, 王晓明, 赵阳, 韩国峰, 常青, 付华, 滕涛, 赵菲菲. 外场(力)辅助射流电沉积研究现状[J]. 材料导报, 2021, 35(5): 5107-5121.
WANG Xu, NIU Zongwei, WANG Xiaoming, ZHAO Yang, HAN Guofeng, CHANG Qing, FU Hua, TENG Tao, ZHAO Feifei. Research Status of External Force Assisted Jet Electrodeposition. Materials Reports, 2021, 35(5): 5107-5121.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120215  或          http://www.mater-rep.com/CN/Y2021/V35/I5/5107
1 Karnik M, Ghosh A, Shekhar R. Transactions of the Institute of Metal Finishing,2009,87,264.
2 Kunieda M, Katoh R, Mori Y. CIRP Annals,1998,47,161.
3 Qiao G Y, Jing T F, Wang N, et al. Electrochimica Acta,2005,51,85.
4 Calderón J A, Henao J E, Gómez M A. Electrochimica Acta,2014,124,190.
5 Yang Y, Cheng Y F. Electrochimica Acta,2013,109,638.
6 Wu A D. Study on the numerical controlled jet electroforming. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China,2001(in Chinese).
吴安德.数控喷射电铸技术研究.博士学位论文,南京航空航天大学,2001.
7 Ma S W, Chen J S, Tian Z J. Hot Working Technology,2016,45(6),9(in Chinese).
马世伟,陈劲松,田宗军.热加工工艺,2016,45(6),9.
8 Qiao G Y, Jing T F, Wang N, et al. Electrochemica Acta,2005,51,85.
9 Zhao Y P. Fundamental research on rapid prototyping nanocrystalline copper oriented by jet electroforming. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China,2005(in Chinese).
赵阳培.射流电铸快速成型纳米晶铜工艺基础研究.博士学位论文,南京航空航天大学,2005.
10 Dheeraj P R, Patra A, Sengupta S, et al. Journal of Alloys and Compounds,2017,29,1093.
11 Ataie S A, Zakeri A. Journal of Alloys and Compounds,2016,674,315.
12 Tudela I, Zhang Y, Pal M, et al. Surface & Coatings Technology,2015,276,89.
13 Chen J S. Procedia Engineering,2011,15,4419.
14 Wang C, Zhong Y, Ren W, et al. Appled Surface Science,2008,254,5649.
15 Guo Z C, Guo S X, Zhu X Y. Electroplating & Polution Control,2001,21(2),4(in Chinese).
郭忠诚,郭淑仙,朱晓云.电镀与环保,2001,21(2),4.
16 Xia F F, Jia W C, Ma C Y, et al. Applied Surface Science,2018,434,228.
17 Bakhit B. Surface & Coatings Technology,2015,275,324.
18 Calderón J A, Henao J E, Gómez M A. Electrochimica Acta,2014,124,190.
19 Yang Y, Cheng Y F. Electrochimica Acta,2013,109,638.
20 Dai P Q, Zhong Y H, Zhou X. Surface Engineering,2014,27,71.
21 Jiang S W, Yang L, Pang J N. Surface & Coatings Technology,2016,286,197.
22 Ning D D, Zhang A, Murtaza M, et al. Journal of Alloys and Compounds,2019,777,1245.
23 Yang Y, Cheng Y F. Surface & Coatings Technology,2013,216,282.
24 Das S, Banthia S, Patra A, et al. Journal of Alloys and Compounds,2018,738,394.
25 Jia W P, Wu M H, Jia Z Y, et al. Surface Technology,2019,48(9),252(in Chinese).
贾卫平,吴蒙华,贾振元,等.表面技术,2019,48(9),252.
26 Wang J D, Zhao Y, Zhu Y G, et al. Ordnance Material Science and Engineering,2016,39(3),93(in Chinese).
王金东,赵岩,朱砚葛,等.兵器材料科学与工程,2016,39(3),83.
27 Jiang W, Shen L D, Qiu M B, et al. Journal of Alloys and Compounds,2018,762,115.
28 Qiao G, Jing T, Wang N, et al. Electrochim Acta,2006,51,85.
29 Zhou S A, Jia W P, Chen W R. Journal of Functional Materials,2020,51(7),07208.
周绍安,贾卫平,陈伟荣.功能材料,2020,51(7),07208.
30 Long Q, Lu F H, Luo X, et al. Hydrometallurgy of China,2018,37(3),179(in Chinese).
龙琼,路坊海,罗勋,等.湿法冶金,2018,37(3),179.
31 Jia W P, Jia Z Y, Miao B, et al. Journal of Dalian University of Techno-logy,2013,53(5),671(in Chinese).
贾卫平,贾振元,苗斌,等.大连理工大学学报,2013,53(5),671.
32 Zhou P W, Zhong Y B, Long Q, et al. Journal of University of Science and Technology Beijing,2014,36(6),787(in Chinese).
周鹏伟,钟云波,龙琼,等.北京科技大学学报,2014,36(6),787.
33 Jiang W, Shen L D, Xu M Y, et al. Journal of Alloys and Compounds,2019,791,847.
34 Ma C Y, Liu B Y, Zhu Y Y, et al. Journal of Function Materials,2015,19(46),19115(in Chinese).
马春阳,刘滨瑜,朱永永,等.功能材料,2015,19(46),19115.
35 Li Y. Study on magnetic field-pulse electrodeposited Ni-TiN nanocoating on the surface of mud pump wearing parts. Master’s Thesis, Northeast Petroleum Universty, China,2016(in Chinese).
李洋.泥浆泵易损件表面磁场-脉冲电沉积Ni-TiN纳米镀层研究.硕士学位论文,东北石油大学,2016.
36 Wang C. Investigation on preparation of Ni-nano Al2O3 composite coating and the electrodeposition mechanism in the magnetic field. Ph.D. Thesis, Shanghai University, China,2011(in Chinese).
汪超.磁场中Ni-纳米Al2O3复合镀层制备及其电沉积机理的研究.博士学位论文,上海大学,2011.
37 Feng Q Y, Li Y J, Zhang Z T, et al. Nanotechnology and Precision Engineering,2007,5(3),215(in Chinese).
冯秋元,李廷举,张忠涛,等.纳米技术与精密工程,2007,5(3),215.
38 Bhatnagar M, Baliga B J. IEEE Transactions on Electron Devices,1993,40,645.
39 Bahadormanesh B, Dolati A, Ahmadi M R. Journal of Alloys and Compounds,2011,509,9406.
40 Wu H, Zhao G, Mu J. Transactions of Nonferrous Metals Society of China,2010,20,703.
41 Mallik A, Ray B C. Thin Solid Films,2009,517,6612.
42 Li Y W, Shang X, Huang X X, et al. Plating & Finishing,2012,34(6),10(in Chinese).
李延伟,尚雄,黄晓曦,等.电镀与精饰,2012,34(6),10.
43 Li C M, Zhao L Z, Liu Z P, et al. Metallic Functional Materials,2009,16(2),37(in Chinese).
李昌明,赵灵智,刘志平,等.金属功能材料,2009,16(2),37.
44 Liu R, Gong K. Mechanical Science and Technology for Aerospace Engineering,2010,29(8),997(in Chinese).
刘润,宫凯.机械科学与技术,2010,29(8),997.
45 Lan L, Tan J, Du J, et al. China Mechanical Engineering,2015,26(9),1260(in Chinese).
兰龙,谭俊,杜军,等.中国机械工程,2015,26(9),1260.
46 Wu D, He J W, Tan J, et al. Jouenal of Harbin Institute of Technology,2018,50(5),83(in Chinese).
吴迪,何嘉武,谭俊,等.哈尔滨工业大学学报,2018,50(5),83.
47 Wu D, Tan J, Shi J, et al. Journal of Academy of Armored Force Engineering,2016,30(6),107(in Chinese).
吴迪,谭俊,石晶,等.装甲兵工程学院学报,2016,30(6),107.
48 Liao Q, Li W P, Liu H C, et al. Chinese Journal of Aeronautics,2010,23,599.
49 Zheng X H, Wang M, Song H, et al. Surface & Coatings Technology,2017,325,181.
50 Ma C Y, Yu W Y, Jiang M Z, et al. Ceramics International,2018,44,5163.
51 Liang Z P, Wang Y Y, Jin H, et al. Electroplating & Polution Control,2019,39(2),68(in Chinese).
梁智鹏,王一雍,金辉,等.电镀与环保,2019,39(2),68.
52 Chen T. Study on ultrasonic pulse electroforming and the properties of copper matrix carbon fiber powder composite. Master’s Thesis, China University of Mining and Technology, China,2016(in Chinese).
陈田.超声场脉冲电铸制备铜-碳纤维粉复合材料及其性能研究.硕士学位论文,中国矿业大学,2016.
53 Song H, Tan J, Zheng X H, et al. Electroplating & Finishing,2017,36(17),903(in Chinese).
宋晧,谭俊,郑晓辉,等.电镀与涂饰,2017,36(17),903.
54 Tan J, Wu D, Gao Y L, et al. Journal of Academy of Armored Force Engineering,2011,25(4),80(in Chinese).
谭俊,吴迪,高玉琳,等.装甲兵工程学院学报,2011,25(4),80.
55 Li Q. Preparation and characterization of Ni-TiN nanocomposite coating by ultrasound assisted jet electrodeposition. Master’s Thesis, Northeast Petroleum University, China,2018(in Chinese).
李强.超声辅助喷射电沉积Ni-TiN纳米复合镀层的制备及表征.硕士学位论文,东北石油大学,2018.
56 Liu B Y. Research on pulse electroforming of Ni-TiN nanocomposite deposits in an ultrasonic field. Master’s Thesis, Northeast Petroleum University, China,2017(in Chinese).
刘滨瑜.超声场中脉冲电铸Ni-TiN纳米复合沉积层研究.硕士学位论文,东北石油大学,2017.
57 Zanella C, Lekka M, Bonora P L. Surface Engineering,2010,26,511.
58 Lan M M. Study on process and properties of pulse electroformed Ni-CeO2 nanocomposite deposits in an ultrasonic field. Master’s Thesis, Henan University of Science and Technology, China,2017(in Chinese).
兰明明.超声场中脉冲电铸Ni-CeO2纳米复合沉积层的工艺及性能研究.硕士学位论文,河南科技大学,2009.
59 Wu D, Song J L, Lan L, et al. Journal of Academy of Armored Force Engineering,2016,30(4),94(in Chinese).
吴迪,宋金琳,兰龙,等.装甲兵工程学院学报,2016,30(4),94.
60 Jin H, Chen L J, Wang Y Y, et al. Electroplating & Finishing,2018,37(19),865(in Chinese).
金辉,陈立佳,王一雍,等.电镀与涂饰,2018,37(19),865.
61 Zhang J W, Su J M, Wang Y Y, et al. Nonferrous Metals,2015,4(15),59.
张峻巍,苏建铭,王一雍,等.有色金属,2015,4(15),59.
62 Tian J Y. Preparation mechanism and properties of Ni-TiN nanocomposite coatings by power ultrasound-pulse electrodeposition. Master’s Thesis, Northeast Petroleum University, China,2017(in Chinese).
田济语.功率超声-脉冲电沉积Ni-TiN纳米复合镀层制备机理及性能研究.硕士学位论文,东北石油大学,2017.
63 Huang D Z. Studies on copper-based superhydrophobic coating by jet electrodeposition. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China,2018(in Chinese).
黄大志.喷射电沉积制备铜基超疏水涂层的基础研究.博士学位论文,南京航空航天大学,2018.
64 Kozhanov V N, Smirnov B N, Filosofova A B, et al. Powder Metallurgy and Metal Ceramics,1988,27,512.
65 Thiemig D, Bung A, Talbot J B. Journal of the Electrochemical Society,2007,154,510.
66 Nieh T G, Wang J G. Intermetallics,2005,13,377.
67 Zhu J, Tian Z J, Shen L D, et al. The Chinese Journal of Nonferrous Metals,2013,23(6),1618(in Chinese).
朱军,田宗军,沈理达,等.中国有色金属学报,2013,23(6),1618.
68 Ma Y, Shen L D, Tian Z J, et al. Material Engineering,2014(3),11(in Chinese).
马云,沈理达,田宗军,等.材料工程,2014(3),11.
69 Liu X, Shen L D, Qiu M B, et al. Surface & Coatings Technology,2016,305,231.
70 Liu X. Research on controllable friction aided jet electrodeposition of film preparation technology. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, China,2016(in Chinese).
刘霞.可控摩擦辅助喷射电沉积薄膜制备技术研究.硕士学位论文,南京航空航天大学,2017.
71 Chen X L, Liu X H, Ouyang M.Z, et al. Scientific Reports, DOI:10. 1038/s41598-019-40774-5.
72 Wang Y H, Shen L D, Qiu M B, et al. Journal of the Electrochemical Society,2016,163,579.
73 Liang Z J, Xie F K. Plating & Finishing,2000,22(2),12(in Chinese).
梁志杰,谢凤宽.电镀与精饰,2000,22(2),12.
74 Ning Z H, He Y D, Gao W. Surface & Coatings Technology,2008,202,2139.
75 Zhu Z W, Zhu D. China Mechanical Engineering,2006,17(1),60(in Chinese).
朱增伟,朱荻.中国机械工程,2006,17(1),60.
76 Zhu B L. Basic research on rapid prototyping and electrodeposition with friction. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, China,2011(in Chinese).
朱本苓.摩擦电沉积快速成形金属零件的基础研究.硕士学位论文,南京航空航天大学,2011.
77 Huang D Z, Shen L D, Chen J S. Transactions of the Indian Institute of Metals,2013,67,351.
78 Wang G F. Basic research on deposit morphology control technologies in jet electrodeposition by smoothing, multicomponenting and interlacing. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China,2011(in Chinese).
王桂峰.平整、多元、交织射流电沉积形态控制技术的基础研究.博士学位论文,南京航空航天大学,2011.
79 Yuan X Y, Wang G F, Shen L D, et al. China Sciencepaper,2016,11(22),2580(in Chinese).
袁晓园,王桂峰,沈理达,等.中国科技论文,2016,11(22),2580.
80 Zhu J. New technology and mechanism of nano mutilayer films prepared by multiple array jet electrodeposition. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China,2017(in Chinese).
朱军.多元阵列射流电沉积制备纳米多层膜新技术及机理研究.博士学位论文,南京航空航天大学,2017.
81 Huang Y C. Principles of metal corrosion and protection, Shanghai Jiao Tong Press, China,1989(in Chinese).
黄永昌.金属腐蚀与防护原理,上海交通大学出版社,1989.
82 Xu J M. Gansu Metallurgy,2007,29(2),68(in Chinese).
许俊民.甘肃冶金,2007,29(2),68.
83 Zhu J. Experimental study on friction aided jet electrodeposition. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, China,2011(in Chinese).
朱军.摩擦辅助喷射电沉积技术工艺试验研究.硕士学位论文,南京航空航天大学,2011.
84 Guo F S. Mechanical grinding of electro galvanized iron alloy coating and corrosion resistance mechanism. Master’s Thesis, Northeast Petroleum University, China,2017(in Chinese).
郭方松.机械研磨电镀锌铁合金镀层及耐蚀机理研究.硕士学位论文,东北石油大学,2017.
85 Nikolić N D, Rakoević Z, Popov K I. Journal of Electroanalytical Che-mistry,2001,514,56.
86 Ye X P, Bonte D, Celis J P, et al. Journal of the Electrochemical Society,1992,139,1592.
87 Zhu J, Tian Z J, Liu Z D, et al. Journal of South China University of Technology (Natural Science Edition),2011,39(11),92(in Chinese).
朱军,田宗军,刘志东,等.华南理工大学学报(自然科学版),2011,39(11),92.
88 Yi D G, Shen L D, Zhu J, et al. Materials Science & Technology,2015,23(3),96(in Chinese).
易笃钢,沈理达,朱军,等.材料科学与工艺,2015,23(3),96.
89 Ban C L, Shao X,Ma J, et al. Transactions of Nonferrous Metals Society of China,2012,22,1989.
90 Zhang L, Shen L D, Liu Z D, et al. Journal of Materials Science & Engineering,2013,31(2),243(in Chinese).
张磊,沈理达,刘志东,等.材料科学与工程学报,2013,31(2),243.
91 Lv B. Preparation, characterization and application in remanufacturing of electrodeposited nanocrystalline nickel coating assisted by flexible friction. Ph.D. Thesis, Northeastern University, China,2015(in Chinese).
吕镖.柔性摩擦辅助电沉积纳米晶镍镀层制备表征及再制造应用.博士学位论文,东北大学,2015.
92 Zhuo W, Shen L D, Qiu M B, et al. Surface & Coatings Technology,2018,333,87.
93 Zhuo W. Research on nanocrystalline nickel prepared by jet electrodeposition with movable, flexible friction. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, China,2018(in Chinese).
卓威.动柔性摩擦喷射电沉积制备纳米晶镍试验研究.硕士学位论文,南京航空航天大学,2018.
94 Lv B, Hu Z F, Wang X H, et al. Chinese Journal of Materials Research,2014,28(4),255(in Chinese).
吕镖,胡振峰,汪笑鹤,等.材料研究学报,2014,28(4),255.
95 Deng Y, Lv B, Wang X H, et al. Electroplating & Finishing,2016,35(19),1021.
邓云,吕镖,汪笑鹤,等.电镀与涂饰,2016,35(19),1021.
96 Lv B, Hu Z F, Wang X H, et al. Surface & Coatings Technology,2015,270,123.
97 Schlesinger M, Paunovic M. Modern electroplating, John Wiley & Sons, USA,2010.
98 Zhang Y, Zhu Z W, Zhu D. China Mechanical Engineering,2012,23(8),893(in Chinese).
章勇,朱增伟,朱荻.中国机械工程,2012,23(8),893.
99 Jiang W, Shen L D, Wang K, et al. Journal of Alloys and Compounds,2019,787,1089.
100 Tian Z J, Wang D S, Wang G F, et al. Transactions of Nonferrous Metals Society of China,2010,20,1037.
101 Hodes G. Electrochemistry of nanomaterials, Wiley-Vch, Germany,2001.
[1] 刘敬福, 齐莉, 李广龙, 曲迎东. 真空搅拌TiCp/7075复合材料的组织、力学与耐磨性能[J]. 材料导报, 2021, 35(6): 6114-6119.
[2] 吴礼宁, 夏延秋, 吴浩, 陈中山, 曹亚楠, 侯冲. 纳米碳管/石墨烯导电硅脂的性能[J]. 材料导报, 2021, 35(6): 6189-6193.
[3] 刘敬萱, 沈健, 李锡武, 闫丽珍, 闫宏伟, 刘宏伟, 温凯, 李亚楠. 6005A-T5铝合金搅拌摩擦焊接头组织与疲劳性能[J]. 材料导报, 2021, 35(2): 2092-2097.
[4] 林发明, 侯启龙, 王杰, 李翔龙. 超声辅助电火花放电制备微纳米镍颗粒中超声功率对颗粒粒径的影响[J]. 材料导报, 2021, 35(2): 2115-2119.
[5] 徐善华, 宋翠梅, 李晗. 模拟海洋和一般大气环境下锈蚀钢材表面形貌差异研究[J]. 材料导报, 2021, 35(2): 2125-2132.
[6] 刘云帆, 秦红玲, 韩翠红, 石佳东, 马国政, 王海斗. 自润滑关节轴承寿命试验及损伤失效机理研究现状[J]. 材料导报, 2021, 35(1): 1036-1045.
[7] 李范, 张杨, 朱利民. 复合材料钻孔缺陷超声检测技术研究进展[J]. 材料导报, 2020, 34(Z2): 528-533.
[8] 李锐, 曾令碧, 刘腾, 王晓杰, 杨平安. 不同温度下纯Ni/NiTi合金的摩擦特性研究[J]. 材料导报, 2020, 34(Z1): 297-303.
[9] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[10] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[11] 张洋, 张海燕, 陈蕴博, 王大鹏, 陈林, 刘晓萍. 热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响[J]. 材料导报, 2020, 34(Z1): 356-360.
[12] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[13] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[14] 王弘义, 罗一平, 纪东升, 陈亚蒙. 基于赫兹接触理论的磁流变液电阻计算方法[J]. 材料导报, 2020, 34(Z1): 486-489.
[15] 黄文豪, 陶平均, 龙德武, 张超汉, 朱坤森, 杨元政. 低树脂基NAO型盘式刹车片摩擦材料的制备及摩擦学性能[J]. 材料导报, 2020, 34(Z1): 563-566.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed