Please wait a minute...
材料导报  2021, Vol. 35 Issue (2): 2115-2119    https://doi.org/10.11896/cldb.20010149
  金属与金属基复合材料 |
超声辅助电火花放电制备微纳米镍颗粒中超声功率对颗粒粒径的影响
林发明1,2, 侯启龙1, 王杰1, 李翔龙1
1 四川大学机械工程学院,成都 610065;
2 西南交通大学机械工程学院,成都 610031
Impact of Ultrasonic Power on Particle Size in Ultrasonic Assisted EDM Preparation of Nanometer Nickel Particles
LIN Faming1,2, HOU Qilong1, WANG Jie1, LI Xianglong1
1 School of Mechanical Engineering, Sichuan University, Chengdu 610065, China;
2 School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
下载:  全 文 ( PDF ) ( 4092KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 超声辅助电火花放电是一种绿色环保、易于控制的制备微纳米金属粉末的方法。为研究超声功率对微纳米金属粉末粒径分布的影响,本工作通过COMSOL仿真软件模拟声压在工作液中随时间的变化趋势,得出不同换能器功率下工作液中的最大声压值。利用测量得到的最大声压值与工作液理论空化阈值的比较确定了换能器的功率值,通过理论计算得到了不同超声功率对粒径的影响范围。最后采用实验室自制设备制备镍粉,通过SEM观测制备的镍粉的形貌,采用激光粒度分析仪分析镍粉的粒径分布,验证了理论分析结果。结果表明:超声的空化与振动效应能够破碎火花放电产生的汽化和熔融金属液滴;工作液中的空化泡破裂所产生的冲击波使小粒径的镍粉颗粒发生碰撞,动能转换成热能,产生的高温使镍颗粒烧结形成金属烧结颈,使多个小颗粒团聚成不规则的大颗粒。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林发明
侯启龙
王杰
李翔龙
关键词:  电火花  超声功率  声压  空化泡阈值  粒径分布    
Abstract: The ultrasonic-assisted electrical discharge is a green, easy and controllable approach to generate micro-nano metallic powders. To investigate the effect of focused ultrasonic power on the morphology and particle size distribution of micro-nano metallic powders, the COMSOL multiphasic simulation software was applied to simulate the sound pressure distribution of ultrasonic in the working box to determine the discharge position. By comparing the maximum sound pressure value with the ultrasonic cavitation threshold, the transducer power required to form cavita-tion was determined, and the influence range of different ultrasonic power on particle size was obtained through theoretical calculation. Finally, the experiment of preparing nickel powder was carried out by using self-made laboratory equipment. The morphology of the prepared nickel powder was observed by SEM, and the particle size distribution of nickel powder was analyzed by laser particle size analyzer to verify the theoretical analysis results. The results show that the ultrasonic cavitation and vibration effects can break the vaporized and molten metal droplets generated by spark discharge; the shock wave generated by the cavitation bubble burst in the working fluid causes the collision of small-sized nickel powder particles, and the kinetic energy is converted into thermal energy, the high temperature generated forms sinter necks between the metal particles, causing multiple small particles to reunite into irregular large particles.
Key words:  EDM    ultrasonic power    sound pressure    cavitation bubble threshold    particle size distribution
               出版日期:  2021-01-25      发布日期:  2021-01-28
ZTFLH:  TG146  
基金资助: 国家自然科学基金(51275324;51435011);科技部创新方法工作专项:四川省创新方法推广应用示范(20171M010700)
通讯作者:  lxlnc@163.com   
作者简介:  林发明,2016—2020年为四川大学机械工程学院博士研究生,主要从事电火花放电法制备微纳米粉末和计算机数控技术研究。2004—2011年在四川大学获得机械制造及自动化专业工学学士学位和工学硕士学位。
李翔龙,四川大学机械工程学院教授,硕士研究生导师。1993年在哈尔滨工程大学获得机械制造工艺及设备专业工学学士学位,1996—2003年在四川大学获得机械制造及自动化专业工学硕士学位和工学博士学位。其主要研究方向包括特种加工、计算机数控技术及工业设备自动化、产品创新设计。在国内外重要期刊发表文章60余篇,授权中国发明专利15项,登记软件著作权2项。
引用本文:    
林发明, 侯启龙, 王杰, 李翔龙. 超声辅助电火花放电制备微纳米镍颗粒中超声功率对颗粒粒径的影响[J]. 材料导报, 2021, 35(2): 2115-2119.
LIN Faming, HOU Qilong, WANG Jie, LI Xianglong. Impact of Ultrasonic Power on Particle Size in Ultrasonic Assisted EDM Preparation of Nanometer Nickel Particles. Materials Reports, 2021, 35(2): 2115-2119.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010149  或          http://www.mater-rep.com/CN/Y2021/V35/I2/2115
1 Hou Y, Kondoh H, Ohta T, et al. Applied Surface Science, 2005, 241(2), 218.
2 Park J, Rishch M, Nam G, et al.Energy and Environmental Science, 2017, 10(1), 129.
3 Gawande M B, Goswami A, Felpin F, et al.Chemical Reviews, 2016, 116(6), 3722.
4 Lu A, Salabas E L, Schüth F. Angewandte Chemie International Edition, 2007, 46(8), 1222.
5 Zhan J, Yue J F, Zhang C F.Journal of Materials Engineering, 2011, 6(7), 10(in Chinese).
湛菁, 岳建峰, 张传福. 材料工程, 2011, 6(7), 10.
6 Zhao P X, Feng X W, Huang D, et al.Coordination Chemistry Reviews, 2015, 287, 114.
7 Nguyen P K, Jin S, Berkowitz A E.Journal of Applied Physics, 2014, 115(17), 17A756.
8 Tabrizi N S, Ullmann M, Vons V A, et al.Journal of Nanoparticle Research, 2008, 11(2), 315.
9 Tseng K H, Chung M Y, Chang C Y.Nanomaterials, 2017, 7, 133.
10 Kim S M, Cho A R, Lee S Y.Journal of Nanoparticle Reserch, 2015, 17(7), 285.
11 Delaportas D, Svarnas P, Alexandrou I, et al.Journal of Physics D:Applied Physics, 2009, 42(24), 245204.
12 Wang N J, Lv Z, Liu D, et al.Hot Working Technology, 2014, 43(16), 31(in Chinese).
王乃娟, 吕振, 刘丹, 等. 热加工工艺, 2014, 43(16), 31.
13 Yang W D, Zhu D G.Equipment Manufacturing Technology, 2008, 4(7), 34(in Chinese).
杨文达, 朱德贵.装备制造技术, 2008, 4(7), 34.
14 Ivanov V V, Efimov A A, Mylnikov D A, et al.Russian Journal of Physical Chemistry, 2018, 92(3), 607.
15 Karpov I V, Ushakov A V, Demin V G, et al.Journal of Magnetism and Magnetic Materials, 2019, 490, 165492.
16 Liu N, Li X L, Liu Y F, et al.Modern Manufacturing Engineering, 2013, 2(11), 16(in Chinese).
刘南, 李翔龙, 刘一凡, 等. 现代制造工程, 2013, 2(11), 16.
17 Zhao Z K, Li X L, Liu Y F, et al.Materials Review B: Research Papers, 2017, 31(7), 72(in Chinese).
赵占奎, 李翔龙, 刘一凡, 等. 材料导报:研究篇, 2017, 31(7), 72.
18 Liu Y F, Li X L, Bai F S, et al.Particuology, 2014, 17, 36.
19 Wang Y T, Li X L, Liu Y F, et al.Journal of Mechanical Engineering, 2014, 50(6), 1(in Chinese).
汪衍涛, 李翔龙, 刘一凡, 等.机械工程学报, 2015, 51(11), 1.
20 Doktycz S J, Suslick K S.Science, 1990, 247(4946), 1067.
21 Pratsinis S E.Journal of Colloid and Interface Science, 1988, 124(2), 416.
22 Liu Y F, Zhu K L, Li X L,et al. Advanced Powder Technology, 2018, 29(4), 863.
23 Liu Y F, Li X L, Li Y, et al.Applied Physics A:Materials Science and Processing, 2016, 122(3), 174.
24 Vanhille C.Ultrasonics Sonochemistry, 2016, 31, 631.
25 Enomoto N, Maruyama S, Nakagawa Z.Materlals Research, 1997, 12(5), 1410.
[1] 侯启龙, 刘一凡, 林发明, 李翔龙. 聚焦超声辅助电火花制备多尺度镍粉时超声功率对镍粉粒径的影响[J]. 材料导报, 2020, 34(16): 16114-16118.
[2] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[3] 王留成, 薛蕾, 郭丹丹, 李伊光, 陈冲冲. 热解温度对竹炭黑基本性能的影响[J]. 材料导报, 2019, 33(8): 1285-1288.
[4] 弯艳玲, 张猛, 杨健, 于化东. 多尺度微结构对铝合金表面疏水性能的影响[J]. 材料导报, 2019, 33(16): 2715-2719.
[5] 杨君宝, 王远超, 曲家惠, 郭秋萍, 金浩, 郭策安, 张健. CrNi3MoVA钢表面电火花沉积NiCrAlY涂层的高速摩擦磨损性能*[J]. 《材料导报》期刊社, 2017, 31(2): 51-54.
[6] 赵占奎, 李翔龙, 刘一凡, 朱昆仑. 电火花-超声复合技术制备镍微米空心球的研究*[J]. 《材料导报》期刊社, 2017, 31(14): 72-76.
[7] 余剑武, 胡其丰, 段文, 何利华, 沈湘. 电加工8418钢的能量分配与表面粗糙度模型*[J]. 《材料导报》期刊社, 2017, 31(14): 153-157.
[8] 杨君宝, 郭秋萍, 赵博远, 金浩, 郭策安, 张健. CrNi3MoVA钢表面电火花沉积W-Ni-Fe-Co涂层的摩擦磨损性能*[J]. 《材料导报》期刊社, 2017, 31(12): 35-38.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed